The Little Schemer

Daniel P. Friedman and Matthias Felleisen
Foreword by Gerald J. Sussman

The Ten Commandments

The First Commandment

When recurring on a list of atoms, lat, ask two questions about it: (null? lat) and else. When recurring on a number, n, ask two questions about it: (zero? n) and else.
When recurring on a list of S-expressions, l, ask three question about it: (null? l), (atom? ($\operatorname{car} l$)), and else.

The Second Commandment

Use cons to build lists.

The Third Commandment

When building a list, describe the first typical element, and then cons it onto the natural recursion.

The Fourth Commandment

Always change at least one argument while recurring. When recurring on a list of atoms, lat, use (cdr lat). When recurring on a number, n, use (sub1 n). And when recurring on a list of S-expressions, l, use (car l) and (cdr l) if neither (null? l) nor (atom? (car l)) are true.

It must be changed to be closer to termination. The changing argument must be tested in the termination condition:
when using $c d r$, test termination with null? and
when using sub1, test termination with zero?

The Fifth Commandment

When building a value with $\&$,always use 0 for the value of the terminating line, for adding 0 does not change the value of an addition.

When building a value with \times, always use 1 for the value of the terminating line, for multiplying by 1 does not change the value of a multiplication.

When building a value with cons, always consider () for the value of the terminating line.

The Sixth Commandment

Simplify only after the function is correct.

The Seventh Commandment

Recur on the subparts that are of the same nature:

- On the sublists of a list.
- On the subexpressions of an arithmetic expression.

The Eighth Commandment

Use help functions to abstract from representations.

The Ninth Commandment

Abstract common patterns with a new function.

The Tenth Commandment
Build functions to collect more than one value at a time.

The Five Rules

The Law of Car

The primitive car is defined only for nonempty lists.

The Law of Cdr

The primitive $c d r$ is defined only for nonempty lists. The $c d r$ of any non-empty list is always another list.

The Law of Cons

The primitive cons takes two arguments. The second argument to cons must be a list. The result is a list.

The Law of Null?

The primitive null? is defined only for lists.

The Law of Eq?

The primitive eq? takes two arguments. Each must be a non-numeric atom.

The Little Schemer
 Fourth Edition

Daniel P. Friedman

Indiana University

Bloomington, Indiana

Matthias Felleisen

Rice University
Houston, Texas

Drawings by Duane Bibby
Foreword by Gerald J. Sussman

The MIT Press
Cambridge, Massachusetts
London, England

Original edition published as The Little LISPer. © 1986, 1974 by Scientific Research Associates.

First MIT Press Edition, 1987.
(C) 1996 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.
This book was set by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
Friedman, Daniel P.
The little schemer / Daniel P. Friedman and Matthias Felleisen; drawings by Duane Bibby; foreword by Gerald J. Sussman.-4 ed., 1st MIT Press ed.
p. cm.

Rev. ed. of: The little LISPer. 3rd ed. © 1989.
Includes index.
ISBN 0-262-56099-2 (pbk: alk. paper)

1. Scheme (Computer program language) 2. LISP (Computer program language)
I. Felleisen, Matthias. II. Friedman, Daniel P. Little LISPer. III. Title.

QA76.73.S34F75 1996
$005.13^{\prime} 3$ —dc20 95-39853

To Mary, Helga, and our children

((Contents)

(Foreword ix)
(Preface xi)
((1. Toys) 2)
((2. Do It, Do It Again, and Again, and Again ...) 14)
((3. Cons the Magnificent) 32)
((4. Numbers Games) 58)
((5. *Oh My Gawd*: It's Full of Stars) 80)
((6. Shadows) 96)
((7. Friends and Relations) 110)
((8. Lambda the Ultimate) 124)
((9. ... and Again, and Again, and Again, ...) 148)
((10. What Is the Value of All of This?) 174)
(Intermission 192)
(Index 194))

Foreword

This foreword appeared in the second and third editions of The Little LISPer. We reprint it here with the permission of the author.

In 1967 I took an introductory course in photography. Most of the students (including me) came into that course hoping to learn how to be creative-to take pictures like the ones I admired by artists such as Edward Weston. On the first day the teacher patiently explained the long list of technical skills that he was going to teach us during the term. A key was Ansel Adams' "Zone System" for previsualizing the print values (blackness in the final print) in a photograph and how they derive from the light intensities in the scene. In support of this skill we had to learn the use of exposure meters to measure light intensities and the use of exposure time and development time to control the black level and the contrast in the image. This is in turn supported by even lower level skills such as loading film, developing and printing, and mixing chemicals. One must learn to ritualize the process of developing sensitive material so that one gets consistent results over many years of work. The first laboratory session was devoted to finding out that developer feels slippery and that fixer smells awful.

But what about creative composition? In order to be creative one must first gain control of the medium. One can not even begin to think about organizing a great photograph without having the skills to make it happen. In engineering, as in other creative arts, we must learn to do analysis to support our efforts in synthesis. One cannot build a beautiful and functional bridge without a knowledge of steel and dirt and considerable mathematical technique for using this knowledge to compute the properties of structures. Similarly, one cannot build a beautiful computer system without a deep understanding of how to "previsualize" the process generated by the procedures one writes.

Some photographers choose to use black-and-white 8×10 plates while others choose 35 mm slides. Each has its advantages and disadvantages. Like photography, programming requires a choice of medium. Lisp is the medium of choice for people who enjoy free style and flexibility. Lisp was initially conceived as a theoretical vehicle for recursion theory and for symbolic algebra. It has developed into a uniquely powerful and flexible family of software development tools, providing wrap-around support for the rapid-prototyping of software systems. As with other languages, Lisp provides the glue for using a vast library of canned parts, produced by members of the user community. In Lisp, procedures are first-class data, to be passed as arguments, returned as values, and stored in data structures. This flexibility is valuable, but most importantly, it provides mechanisms for formalizing, naming, and saving the idioms-the common patterns of usage that are essential to engineering design. In addition, Lisp programs can easily manipulate the representations of Lisp programs-a feature that has encouraged the development of a vast structure of program synthesis and analysis tools, such as cross-referencers.

The Little LISPer is a unique approach to developing the skills underlying creative programming in Lisp. It painlessly packages, with considerable wit, much of the drill and practice that is necessary to learn the skills of constructing recursive processes and manipulating recursive data-structures. For the student of Lisp programming, The Little LISPer can perform the same service that Hanon's finger exercises or Czerny's piano studies perform for the student of piano.

Gerald J. Sussman
Cambridge, Massachusetts

Preface

To celebrate the twentieth anniversary of Scheme we revised The Little LISPer a third time, gave it the more accurate title The Little Schemer, and wrote a sequel: The Seasoned Schemer.

Programs accept data and produce data. Designing a program requires a thorough understanding of data; a good program reflects the shape of the data it deals with. Most collections of data, and hence most programs, are recursive. Recursion is the act of defining an object or solving a problem in terms of itself.

The goal of this book is to teach the reader to think recursively. Our first task is to decide which language to use to communicate this concept. There are three obvious choices: a natural language, such as English; formal mathematics; or a programming language. Natural languages are ambiguous, imprecise, and sometimes awkwardly verbose. These are all virtues for general communication, but something of a drawback for communicating concisely as precise a concept as recursion. The language of mathematics is the opposite of natural language: it can express powerful formal ideas with only a few symbols. Unfortunately, the language of mathematics is often cryptic and barely accessible without special training. The marriage of technology and mathematics presents us with a third, almost ideal choice: a programming language. We believe that programming languages are the best way to convey the concept of recursion. They share with mathematics the ability to give a formal meaning to a set of symbols. But unlike mathematics, programming languages can be directly experienced-you can take the programs in this book, observe their behavior, modify them, and experience the effect of these modifications.

Perhaps the best programming language for teaching recursion is Scheme. Scheme is inherently symbolic-the programmer does not have to think about the relationship between the symbols of his own language and the representations in the computer. Recursion is Scheme's natural computational mechanism; the primary programming activity is the creation of (potentially) recursive definitions. Scheme implementations are predominantly interactive-the programmer can immediately participate in and observe the behavior of his programs. And, perhaps most importantly for our lessons at the end of this book, there is a direct correspondence between the structure of Scheme programs and the data those programs manipulate.

Although Scheme can be described quite formally, understanding Scheme does not require a particularly mathematical inclination. In fact, The Little Schemer is based on lecture notes from a two-week "quickie" introduction to Scheme for students with no previous programming experience and an admitted dislike for anything mathematical. Many of these students were preparing for careers in public affairs. It is our belief that writing programs recursively in Scheme is essentially simple pattern recognition. Since our only concern is recursive programming, our treatment is limited to the whys and wherefores of just a few Scheme features: car, cdr, cons, eq?, null?, zero?, add1, sub1, number?, and, or, quote, lambda, define, and cond. Indeed, our language is an idealized Scheme.

The Little Schemer and The Seasoned Schemer will not introduce you to the practical world of programming, but a mastery of the concepts in these books provides a start toward understanding the nature of computation.

What You Need to Know to Read This Book
The reader must be comfortable reading English, recognizing numbers, and counting.

Acknowledgments

We are indebted to many people for their contributions and assistance throughout the development of the second and third editions of this book. We thank Bruce Duba, Kent Dybvig, Chris Haynes, Eugene Kohlbecker, Richard Salter, George Springer, Mitch Wand, and David S. Wise for countless discussions that influenced our thinking while conceiving this book. Ghassan Abbas, Charles Baker, David Boyer, Mike Dunn, Terry Falkenberg, Rob Friedman, John Gateley, Mayer Goldberg, Iqbal Khan, Julia Lawall, Jon Mendelsohn, John Nienart, Jeffrey D. Perotti, Ed Robertson, Anne Shpuntoff, Erich Smythe, Guy Steele, Todd Stein, and Larry Weisselberg provided many important comments on the drafts of the book. We especially want to thank Bob Filman for being such a thorough and uncompromising critic through several readings. Finally we wish to acknowledge Nancy Garrett, Peg Fletcher, and Bob Filman for contributing to the design and TEXery.

The fourth and latest edition greatly benefited from Dorai Sitaram's incredibly clever Scheme typesetting program SLAT E_{X}. Kent Dybvig's Chez Scheme made programming in Scheme a most pleasant experience. We gratefully acknowledge criticisms and suggestions from Shelaswau Bushnell, Richard Cobbe, David Combs, Peter Drake, Kent Dybvig, Rob Friedman, Steve Ganz, Chris Haynes, Erik Hilsdale, Eugene Kohlbecker, Shriram Krishnamurthi, Julia Lawall, Suzanne Menzel Collin McCurdy, John Nienart, Jon Rossie, Jonathan Sobel, George Springer, Guy Steele, John David Stone, Vikram Subramaniam, Mitch Wand, and Melissa Wingard-Phillips.

Guidelines for the Reader

Do not rush through this book. Read carefully; valuable hints are scattered throughout the text. Do not read the book in fewer than three sittings. Read systematically. If you do not fully understand one chapter, you will understand the next one even less. The questions are ordered by increasing difficulty; it will be hard to answer later ones if you cannot solve the earlier ones.

The book is a dialogue between you and us about interesting examples of Scheme programs. If you can, try the examples while you read. Schemes are readily available. While there are minor syntactic variations between different implementations of Scheme (primarily the spelling of particular names and the domain of specific functions), Scheme is basically the same throughout the world. To work with Scheme, you will need to define atom?, sub1, and add1. which we introduced in The Little Schemer:

```
(define atom?
    (lambda (x)
        (and (not (pair? x)) (not (null? x)))))
```

To find out whether your Scheme has the correct definition of atom?, try (atom? (quote ())) and make sure it returns \#f. In fact, the material is also suited for modern Lisps such as Common Lisp. To work with Lisp, you will also have to add the function atom?:

```
(defun atom? (x)
    (not (listp x)))
```

Moreover, you may need to modify the programs slightly. Typically, the material requires only a few changes. Suggestions about how to try the programs in the book are provided in the framenotes. Framenotes preceded by "S:" concern Scheme, those by "L:" concern Common Lisp.

In chapter 4 we develop basic arithmetic from three operators: add1, sub1, and zero?. Since Scheme does not provide add1 and sub1, you must define them using the built-in primitives for addition and subtraction. Therefore, to avoid a circularity, our basic arithmetic addition and subtraction must be written using different symbols: $\&$ and - , respectively.

We do not give any formal definitions in this book. We believe that you can form your own definitions and will thus remember them and understand them better than if we had written each one for you. But be sure you know and understand the Laws and Commandments thoroughly before passing them by. The key to learning Scheme is "pattern recognition." The Commandments point out the patterns that you will have already seen. Early in the book, some concepts are narrowed for simplicity; later, they are expanded and qualified. You should also know that, while everything in the book is Scheme, Scheme itself is more general and incorporates more than we could intelligibly cover in an introductory text. After you have mastered this book, you can read and understand more advanced and comprehensive books on Scheme.

We use a few notational conventions throughout the text, primarily changes in typeface for different classes of symbols. Variables and the names of primitive operations are in italic. Basic data, including numbers and representations of truth and falsehood, is set in sans serif. Keywords, i.e., define, lambda, cond, else, and, or, and quote, are in boldface. When you try the programs, you may ignore the typefaces but not the related framenotes. To highlight this role of typefaces, the programs in framenotes are set in a typewriter face. The typeface distinctions can be safely ignored until chapter 10 , where we treat programs as data.

Finally, Webster defines "punctuation" as the act of punctuating; specifically, the act, practice, or system of using standardized marks in writing and printing to separate sentences or sentence elements or to make the meaning clearer. We have taken this definition literally and have abandoned some familiar uses of punctuation in order to make the meaning clearer. Specifically, we have dropped the use of punctuation in the left-hand column whenever the item that precedes such punctuation is a term in our programming language.

Food appears in many of our examples for two reasons. First, food is easier to visualize than abstract symbols. (This is not a good book to read while dieting.) We hope the choice of food will help you understand the examples and concepts we use. Second, we want to provide you with a little distraction. We know how frustrating the subject matter can be, and a little distraction will help you keep your sanity.

You are now ready to start. Good luck! We hope you will enjoy the challenges waiting for you on the following pages.

Bon appétit!

Daniel P. Friedman
Matthias Felleisen

The Little Schemer

Is it true that this is an atom?
atom ${ }^{1}$

L, S: (quote atom) or 'atom
" $\mathrm{L}:$ " and " $\mathrm{S}:$ " are described in the preface.

Yes,
because atom is a string of characters beginning with the letter a.

Is it true that this is an atom? turkey

Yes,
because turkey is a string of characters beginning with a letter.

Is it true that this is an atom? 1492

Yes,
because 1492 is a string of digits.

Is it true that this is an atom? u

Yes,
because u is a string of one character, which is a letter.

Is it true that this is an atom? *abc§

Yes,
because $* a b c \$$ is a string of characters beginning with a letter or special character other than a left "(" or right ")" parenthesis.

Is it true that this is a list? (atom) ${ }^{1}$

Yes,
because (atom) is an atom enclosed by parentheses.
${ }^{1} \mathrm{~L}, \mathrm{~S}$: (quote (atom)) or '(atom)

Is it true that this is a list?
Yes,
because it is a collection of atoms enclosed by parentheses.

Is it true that this is a list?
(atom turkey) or

No,
because these are actually two
S-expressions not enclosed by parentheses.
The first one is a list containing two atoms, and the second one is an atom.

Is it true that this is a list?
((atom turkey) or)

Yes,
because the two S -expressions are now enclosed by parentheses.

Is it true that this is an S-expression? xyz

Is it true that this is an S -expression? (x y z)

Yes,
because all atoms are S -expressions.

Is it true that this is an S -expression?

$$
((x y) z)
$$

Yes,
because all lists are S -expressions.

Is it true that this is a list?
(how are you doing so far)

Yes,
because it is a collection of S-expressions enclosed by parentheses.

How many S-expressions are in the list (how are you doing so far) and what are they?

Six,
how, are, you, doing, so, and far.

Is it true that this is a list?
(((how) are) ((you) (doing so)) far)

Yes,
because it is a collection of S-expressions enclosed by parentheses.

How many S -expressions are in the list
(((how) are) ((you) (doing so)) far) and what are they?

Three,
((how) are), ((you) (doing so)), and far.

Is it true that this is a list?
()

Yes,
because it contains zero S-expressions enclosed by parentheses. This special S-expression is called the null (or empty) list.

No,

Yes,
because it is a collection of S-expressions enclosed by parentheses.
a,
because a is the first atom of this list.

What is the car of l
where l is the argument (abc)

Is it true that this is a list?
(() () ())

Is it true that this is an atom?
()
because () is just a list.

What is the car of l where

$$
l \text { is }((a b c) \times y z)
$$

(abc),
because ($a b c$) is the first S-expression of this non-empty list.

What is the car of l where l is hotdog

No answer.
You cannot ask for the car of an atom.

No answer. ${ }^{1}$
You cannot ask for the car of the empty list.

[^0]What is the car of l where l is ()

The Law of Car

The primitive car is defined only for non-empty lists.

What is the car of l

 wherel is ((hotdogs)) (and) (pickle) relish)
((hotdogs)),
read as:
"The list of the list of hotdogs."
((hotdogs)) is the first S-expression of l.

What is (car l)
where
l is (((hotdogs)) (and) (pickle) relish)
((hotdogs)),
because (car l) is another way to ask for "the car of the list l. "

What is (car (car l))
(hotdogs).
where
l is ((hotdogs)) (and))

What is the $c d r$ of l where
l is (abc)
Note: "cdr" is pronounced "could-er."
(b c),
because (b c) is the list l without (car l).

What is the $c d r$ of l where

$$
l \text { is }((\mathrm{abc}) \times y \mathrm{z})
$$

What is the $c d r$ of l

().

where
l is (hamburger)

What is ($c d r l$) where
l is $((\mathrm{x}) \mathrm{tr})$
(t r),
because ($c d r l$) is just another way to ask for "the cdr of the list l."

What is ($c d r a$) where a is hotdogs

No answer.
You cannot ask for the $c d r$ of an atom.

What is ($c d r l$) where l is ()

No answer. ${ }^{1}$
You cannot ask for the $c d r$ of the null list.
${ }^{1}$ L: nil

The Law of Cdr

The primitive $c d r$ is defined only for non-empty lists. The $c d r$ of any nonempty list is always another list.

What is $(c a r(c d r l))$
where
l is $((b)(x y)((c)))$
($\mathrm{x} y$),
because $((\mathrm{xy})((\mathrm{c})))$ is $(c d r l)$, and (x y$)$ is the $c a r$ of $(c d r l)$.

What is $(c d r(c d r l))$
where
l is $((\mathrm{b})(\mathrm{xy})((\mathrm{c})))$

What is $(c d r(c a r l))$
where
l is $(\mathrm{a}(\mathrm{b}(\mathrm{c})) \mathrm{d})$
(((c))),
because ((xy) ((c))) is ($c d r l)$, and (((c))) is the $c d r$ of $(c d r l)$.

What does car take as an argument?

What does $c d r$ take as an argument?

What is the cons of the atom a and the list l where a is peanut
and
l is (butter and jelly)
This can also be written "(cons a l)".
Read: "cons the atom a onto the list l."

No answer,
since ($c a r l$) is an atom, and $c d r$ does not take an atom as an argument; see The Law of Cdr.

What is the cons of s and l where s is (banana and) and
l is (peanut butter and jelly)
((banana and) peanut butter and jelly), because cons adds any S -expression to the front of a list.

What is (conssl)
((help) this) is very ((hard) to learn)).
where
s is ((help) this)
and
l is (is very ((hard) to learn))

What does cons take as its arguments?
cons takes two arguments:
the first one is any S-expression;
the second one is any list.

What is (cons sl)
((ab(c))),
where
because () is a list.
s is ($\mathrm{ab}(\mathrm{c}))$
and
l is ()

What is (cons s l)
(a).
where s is a
and l is ()

What is (conssl)
where
s is ((abc))
and
l is b

No answer, ${ }^{1}$
since the second argument l must be a list.
${ }^{1}$ In practice, (cons $\alpha \beta$) works for all values α and β, and $(\operatorname{car}(\operatorname{cons} \alpha \beta))=\alpha$ $(\operatorname{cdr}(\operatorname{cons} \alpha \beta))=\beta$.

No answer.
Why?

What is (cons sl)
where s is a and l is b

The Law of Cons

The primitive cons takes two arguments.
The second argument to cons must be a list. The result is a list.

What is (cons s(car l)) where s is a and

$$
l \text { is }((b) \mathrm{c} d)
$$

(ab).
Why?

What is (cons $s(c d r l)$)
where s is a
and

$$
l \text { is }((\mathrm{b}) \mathrm{cd})
$$

(acd).
Why?

Is it true that the list l is the null list where l is ()

Yes,
because it is the list composed of zero S-expressions.
This question can also be written: (null? l).

What is (null? ${ }^{1}$ (quote ()))

Is (null? l) true or false where
l is (abc)

True, because (quote ()) ${ }^{1}$ is a notation for the null list.

[^1]False, because l is a non-empty list.

Is (null? a) true or false where
a is spaghetti

No answer, ${ }^{1}$
because you cannot ask null? of an atom.
${ }^{1}$ In practice, (null? α) is false for everything, except the empty list.

The Law of Null?
 The primitive null? is defined only for lists.

Is it true or false that s is an atom where s is Harry

True,
because Harry is a string of characters beginning with a letter.

Is (atom? ${ }^{1} s$) true or false where
s is Harry

True,
because (atom? s) is just another way to ask "Is s is an atom?"

```
1 L:(defun atom? (x)
        (not (listp x)))
    S: (define atom?
    (lambda (x)
        (and (not (pair? x)) (not (null? x)))))
```

Is (atom? s) true or false where
s is (Harry had a heap of apples)

False, since s is a list.

How many arguments does atom? take and what are they?

It takes one argument. The argument can be any S-expression.

Is (atom? (car l)) true or false where
l is (Harry had a heap of apples)

True,
because (car l) is Harry, and Harry is an atom.

Is (atom? (cdr l)) true or false where
l is (Harry had a heap of apples)

Is (atom? $(c d r l)$) true or false where l is (Harry)

False,
because the list () is not an atom.

Is (atom? $(c a r(c d r l)))$ true or false where
l is (swing low sweet cherry oat)

True,
because ($c d r l$) is (low sweet cherry oat), and ($c a r(c d r l)$) is low, which is an atom.

Is (atom? $(c a r(c d r l)))$ true or false where
l is (swing (low sweet) cherry oat)

False,
since ($c d r l$) is ((low sweet) cherry oat), and ($\operatorname{car}(c d r l)$) is (low sweet), which is a list.

True or false: $a 1$ and $a 2$ are the same atom where $a 1$ is Harry and
a2 is Harry

True, because $a 1$ is the atom Harry and $a 2$ is the atom Harry.

Is (eq? ${ }^{1} a 1$ a2) true or false where $a 1$ is Harry and
a2 is Harry

True,
because (eq? a1 a2) is just another way to ask, "Are $a 1$ and $a 2$ the same non-numeric atom?"
${ }^{1}$ L: eq

Is (eq? a1 a2) true or false

False, since $a 1$ and a2 are different atoms.
where $a 1$ is margarine and
a2 is butter

How many arguments does eq? take and what are they?

It takes two arguments. Both of them must be non-numeric atoms.

Is (eq? l1 l2) true or false where $l 1$ is ()
and
l2 is (strawberry)

Is (eq? $n 1 n 2$) true or false where $n 1$ is 6
and
$n 2$ is 7

No answer, ${ }^{1}$
() and (strawberry) are lists.

1 In practice, lists may be arguments of eq?. Two lists are eq? if they are the same list.

No answer, ${ }^{1}$
6 and 7 are numbers.

1 In practice, some numbers may be arguments of eq?.

The Law of Eq?

The primitive eq? takes two arguments. Each must be a nonnumeric atom.

Is (eq? (car l) a) true or false where
l is (Mary had a little lamb chop) and
a is Mary

True,
because (car l) is the atom Mary, and the argument a is also the atom Mary.

Is $(e q$? $(c d r l) a)$ true or false where
l is (soured milk)
and
a is milk

No answer.

See The Laws of Eq? and Cdr.

Is $(e q$? $(c a r l)(c a r(c d r l)))$ true or false where
l is (beans beans we need jelly beans)

True, because it compares the first and second atoms in the list.
\Rightarrow Now go make yourself a peanut butter and jelly sandwich. \Longleftarrow

This space reserved for
JELLY STAINS!

0

True or false: (lat? l) where
l is (Jack Sprat could eat no chicken fat)

True,
because each S-expression in l is an atom.

True or false: (lat? l)
where
l is ((Jack) Sprat could eat no chicken fat)

False, since (car l) is a list.

True or false: (lat? l) where
l is (Jack (Sprat could) eat no chicken fat)

False, since one of the S -expressions in l is a list.

True or false: (lat? l) where l is ()

True, because it does not contain a list.

True!

Every lat is a list of atoms!

Write the function lat? using some, but not necessarily all, of the following functions: car cdr cons null? atom? and eq?

You were not expected to be able to do this yet, because you are still missing some ingredients. Go on to the next question. Good luck.

Are you rested?

```
(define lat?}\mp@subsup{}{}{1
    (lambda (l)
        (cond
            ((null? l) #t )
            ((atom? (car l)) (lat? (cdr l)))
            (else #f))))
\(((\) atom? \((c a r l))(l a t ?(c d r l)))\)
(else \#f))))
``` where

How do we determine the answer \#t for the application
(lat? l)
\#t.
The application (lat? l)
where
\(l\) is (bacon and eggs)
has the value \#t -true-because \(l\) is a lat.

What is the value of (lat? l)
\(l\) is the argument (bacon and eggs)
```

1 L: (defun lat? (1)
(cond
((null 1) t)
((atom? (car l)) (lat? (cdr 1)))
(t nil)))
L: (defun lat? (1)
(cond
( null 1) t)
( t nil)))

```

You were not expected to know this one either. The answer is determined by answering the questions asked by lat?

Hint: Write down the definition of the function lat? and refer to it for the next group of questions.

What is the first question asked by (lat? l)
(null? l)
Note:
(cond . . .) asks questions; (lambda ...) creates a function; and (define ...) gives it a name.

What is the meaning of the cond-line
((null? l) \#t)
where
\(l\) is (bacon and eggs)
(null? \(l\)) asks if the argument \(l\) is the null list. If it is, the value of the application is true. If it is not, we ask the next question. In this case, \(l\) is not the null list, so we ask the next question.

What is the next question?
(atom? (car l)).

What is the meaning of the line
((atom? (car l)) (lat? (cdr l))) where
\(l\) is (bacon and eggs)
(atom? (car l)) asks if the first S-expression of the list \(l\) is an atom. If (car \(l\)) is an atom, we want to know if the rest of \(l\) is also composed only of atoms. If (car l) is not an atom, we ask the next question. In this case, (carl) is an atom, so the value of the function is the value of (lat? \((c d r l)\)).

What is the meaning of (lat? \((c d r l)\))
(lat? \((c d r l))\) finds out if the rest of the list \(l\) is composed only of atoms, by referring to the function with a new argument.

Now what is the argument \(l\) for lat?

What is the next question?

Now the argument \(l\) is (\(c d r l\)), which is (and eggs).

What is the meaning of the line
(\((\) null? \(l)\) \#t)
where
\(l\) is now (and eggs)
(null? \(l\)) asks if the argument \(l\) is the null list. If it is, the value of the application is \#t. If it is not, we ask the next question. In this case, \(l\) is not the null list, so we ask the next question.

What is the next question?
(atom? (car l)).

What is the meaning of the line
((atom? (car l)) (lat? (cdr l)))
where
\(l\) is (and eggs)
(atom? (carl)) asks if (carl) is an atom. If it is an atom, the value of the application is (lat? (cdr l)). If not, we ask the next question. In this case, (carl) is an atom, so we want to find out if the rest of the list \(l\) is composed only of atoms.

What is the meaning of
(lat? (cdr l))
(lat? \((c d r l)\)) finds out if the rest of \(l\) is composed only of atoms, by referring again to the function lat?, but this time, with the argument (\(c d r l\)), which is (eggs).

What is the next question?
(null? l).

What is the meaning of the line
((null? l) \#t)
where
\(l\) is now (eggs)
(\(n u l l\) ? \(l\)) asks if the argument \(l\) is the null list. If it is, the value of the application is \#t - true. If it is not, move to the next question. In this case, \(l\) is not null, so we ask the next question.
(atom? (car l)).
(atom? (car l)) asks if (carl) is an atom. If it is, the value of the application is (lat? (\(c d r l\))). If (\(c a r l\)) is not an atom, ask the next question. In this case, (\(\operatorname{carl} l\)) is an atom, so once again we look at (lat? \((c d r l)\)).

What is the meaning of (lat? \((c d r l))\)
(lat? \((c d r l)\)) finds out if the rest of the list \(l\) is composed only of atoms, by referring to the function lat?, with \(l\) becoming the value of \((c d r l)\).

Now, what is the argument for lat?

What is the meaning of the line ((null? l) \#t)
where
\(l\) is now ()
(\(n\) ull? \(l\)) asks if the argument \(l\) is the null list. If it is, the value of the application is the value of \#t. If not, we ask the next question. In this case, () is the null list. So, the value of the application (lat? l) where
\(l\) is (bacon and eggs), is \#t -true.

Do you remember the question about (lat? l)

Probably not. The application (lat? l) has the value \#t if the list \(l\) is a list of atoms where
\(l\) is (bacon and eggs).

Can you describe what the function lat? does in your own words?

Here are our words:
"lat? looks at each S-expression in a list, in turn, and asks if each S-expression is an atom, until it runs out of S -expressions. If it runs out without encountering a list, the value is \(\# t\). If it finds a list, the value is \#f-false."
To see how we could arrive at a value of "false," consider the next few questions.

This is the function lat? again:
```

(define lat?
(lambda (l)
(cond
((null? l) \#t )
((atom? (car l)) (lat? (cdr l)))
(else \#f))))

```

What is the value of (lat? \(l\))
where
\(l\) is now (bacon (and eggs))

\section*{\#f,}
since the list \(l\) contains an S-expression that is a list.

What is the meaning of (lat? \((c d r l)\))
(lat? (\(c d r l)\)) checks to see if the rest of the list \(l\) is composed only of atoms, by referring to lat? with \(l\) replaced by \((c d r l)\).

What is the meaning of the line
((null? l) \#t)
where
\(l\) is now ((and eggs))

What is the next question?

What is the meaning of the line
\(((a t o m ?(c a r l))(l a t ?(c d r l)))\) where
\(l\) is now ((and eggs))
(null? \(l\)) asks if \(l\) is the null list. If it is null, the value is \#t. If it is not null, we ask the next question. In this case, \(l\) is not null, so move to the next question.
(atom? (car l)).
(atom? (car l)) asks if (carl) is an atom. If it is, the value is (lat? \((c d r l))\). If it is not, we move to the next question. In this case, (car l) is not an atom, so we ask the next question.

What is the next question?

What is the meaning of the question else

Is else true?
else

Why is else the last question?

Why do we not need to ask any more questions?

What is the meaning of the line (else \#f)

Because we do not need to ask any more questions.
else.
else asks if else is true.

Yes, because the question else is always true!

Of course.

Because a list can be empty, can have an atom in the first position, or can have a list in the first position.

What is
)))

These are the closing or matching parentheses of (cond ..., (lambda ..., and (define, which appear at the beginning of a function definition.

Can you describe how we determined the value \#f for (lat? l)
where
\(l\) is (bacon (and eggs))

Here is one way to say it:
"(lat? l) looks at each item in its argument to see if it is an atom. If it runs out of items before it finds a list, the value of (lat? \(l\)) is \#t. If it finds a list, as it did in the example (bacon (and eggs)), the value of (lat? l) is \#f."

Is (or (null? l1) (atom? l2)) true or false where \(l 1\) is () and
\(l 2\) is (defg)

True,
because (null? l1) is true where \(l 1\) is ().

Is (or (null? l1) (null? l2)) true or false where
\(l 1\) is (abc)
and
l2 is ()

True,
because (null? l2) is true where \(l 2\) is ().

Is (or (null? l1) (null? l2)) true or false where
\[
l 1 \text { is }(\mathrm{ab} \mathrm{c})
\]
and
l2 is (atom)

False,
because neither (null? l1) nor (null? 12) is true where
\(l 1\) is (abc)
and
12 is (atom).

What does (or ...) do?
(or ...) asks two questions, one at a time. If the first one is true it stops and answers true. Otherwise it asks the second question and answers with whatever the second question answers.

Is it true or false that \(a\) is a member of lat where \(a\) is tea
and lat is (coffee tea or milk)

True, because one of the atoms of the lat, (coffee tea or milk) is the same as the atom \(a\)-tea.

Is (member? a lat) true or false where \(a\) is poached
and
lat is (fried eggs and scrambled eggs)

False, since \(a\) is not one of the atoms of the lat.

This is the function member?
(define member?
(lambda (a lat)
(cond
((null? lat) \#f)
(else (or (eq? (car lat) a)
\((\) member? a \((c d r\) lat \()))))))\)
What is the value of (member? a lat)
where \(a\) is meat
and
lat is (mashed potatoes and meat gravy)
\#t,
because the atom meat is one of the atoms of lat,
(mashed potatoes and meat gravy).

How do we determine the value \#t for the above application?

The value is determined by asking the questions about (member? a lat).

Hint: Write down the definition of the function member? and refer to it while you work on the next group of questions.

This is also the first question asked by lat?

\section*{The First Commandment}

\section*{(preliminary)}

\section*{Always ask null? as the first question in expressing any function.}

What is the meaning of the line
((null? lat) \#f)
where
lat is (mashed potatoes and meat gravy)

What is the next question?

Why is else the next question?

Is else really a question?

What is the meaning of the line
(else (or (eq? (car lat) a) (member? a (cdr lat))))
(null? lat) asks if lat is the null list. If it is, the value is \#f, since the atom meat was not found in lat. If not, we ask the next question. In this case, it is not null, so we ask the next question.
else.

Because we do not need to ask any more questions.

Yes, else is a question whose value is always true.

Now that we know that lat is not null?, we have to find out whether the car of lat is the same atom as \(a\), or whether \(a\) is somewhere in the rest of lat. The answer
\[
\text { (or }(e q \text { ? }(c a r l a t) a)
\]
(member? a (cdr lat)))
does this.

True or false:
\[
(\text { or }(e q \text { ? }(\text { car lat }) a)
\]
\[
\text { (member? a }(\text { cdr lat })) \text {) }
\]
where \(a\) is meat
and
lat is (mashed potatoes and meat gravy)

We will find out by looking at each question in turn.

Is (eq? (car lat) a) true or false where \(a\) is meat and
lat is (mashed potatoes and meat gravy)

False,
because meat is not eq? to mashed, the car of
(mashed potatoes and meat gravy).

What is the second question of (or ...)

Now what are the arguments of member?

What is the next question?

Is (null? lat) true or false where
lat is (potatoes and meat gravy)

What do we do now?

What is the next question?

What is the meaning of
(or (eq? (car lat) a)
(member? a (cdr lat)))
\(a\) is meat and
lat is now (\(c d r\) lat), specifically
(potatoes and meat gravy).
(member? a (cdr lat)).
This refers to the function with the argument lat replaced by (\(c d r\) lat).
(null? lat).
Remember The First Commandment.
\(\# f\)-false.

Ask the next question.
else.
(or (eq? (car lat) a)
(member? a (cdr lat)))
finds out if \(a\) is eq? to the car of lat or if \(a\) is a member of the \(c d r\) of lat by referring to the function.

Is a eq? to the car of lat

No, because \(a\) is meat and the car of lat is potatoes.

So what do we do next?

Now, what are the arguments of member?

What is the next question?

What do we do now?

What is the next question?

What is the value of
(or (eq? (car lat) a)
(member? a (cdr lat)))

Why?
Because (eq? (car lat) a) is false.

What do we do now?

What are the new arguments?

What is the next question?

What do we do now?

What is the next question?
Since (null? lat) is false, ask the next question.

What is the value of
(or (eq? (car lat) a) (member? a (cdr lat)))
\#t,
because (car lat), which is meat, and \(a\), which is meat, are the same atom. Therefore, (or ...) answers with \#t.

What is the value of the application (member? a lat)
where \(a\) is meat
and
lat is (meat gravy)
\#t,
because we have found that meat is a member of (meat gravy).
\#t,
because meat is also a member of the lat (and meat gravy).

What is the value of the application (member? a lat)
where \(a\) is meat
and lat is (and meat gravy)

What is the value of the application
(member? a lat)
where \(a\) is meat
and
lat is (potatoes and meat gravy)

What is the value of the application (member? a lat)
where \(a\) is meat
and
lat is (mashed potatoes and meat gravy)
\#t,
because meat is also a member of the lat (potatoes and meat gravy).

Just to make sure you have it right, let's quickly run through it again. What is the value of (member? a lat)
where
\(a\) is meat
and
lat is (mashed potatoes and meat gravy)
\#t,
because meat is also a member of the lat (mashed potatoes and meat gravy).
Of course, this is our original lat.
\#t.
Hint: Write down the definition of the function member? and its arguments and refer to them as you go through the next group of questions.

No. Move to the next line.
else
(or (eq? (car lat) a)
(member? a (cdr lat)))
(eq? (car lat) a)

What next?
(null? lat)
else
(null? lat)
No. Move to the next line.

\section*{else}
(null? lat)
(eq? (car lat) a)
Yes, the value is \(\# t\).
(or (eq? (car lat) a)
\#t.
(member? a (cdr lat)))

What is the value of (member? a lat) where \(a\) is meat
and
lat is (meat gravy)

What is the value of (member? a lat)
where \(a\) is meat
and
lat is (and meat gravy)

What is the value of (member? a lat) \#t. where \(a\) is meat
and
lat is (potatoes and meat gravy)

What is the value of (member? a lat) \#t. where \(a\) is meat
and
lat is (mashed potatoes and meat gravy)

What is the value of (member? a lat) \#f. where \(a\) is liver
and
lat is (bagels and lox)

Let's work out why it is \#f. What's the first (null? lat). question member? asks?
(null? lat) No. Move to the next line.
else \begin{tabular}{c}
Yes, but \((e q\) ? \((c a r\) lat \() a)\) is false. \\
Recur with \(a\) and \((c d r\) lat) \\
where \(a\) is liver \\
and \\
\((c d r\) lat) is (and lox).
\end{tabular}
(null? lat)
else
(null? lat)
else

No. Move to the next line.

Yes, but (eq? (car lat) a) is false.
Recur with \(a\) and (\(c d r\) lat) where \(a\) is liver and
(\(c d r\) lat) is (lox).

No. Move to the next line.

Yes, but (eq? (car lat) a) is still false.
Recur with \(a\) and (cdr lat) where \(a\) is liver and
(\(c d r l a t)\) is ().
(null? lat)

What is the value of (member? a lat) where \(a\) is liver
and
lat is ()

Yes.
\#f.

What is the value of
\#f.
(or (eq? (car lat) a)
(member? a (cdr lat)))
where
\(a\) is liver
and
lat is (lox)

What is the value of (member? a lat)
\#f.
where \(a\) is liver
and
lat is (lox)

What is the value of
\#f.
(or (eq? (car lat) a) (member? a (cdr lat)))
where
\(a\) is liver
and
lat is (and lox)

What is the value of (member? a lat) \#f. where \(a\) is liver
and
lat is (and lox)

What is the value of
\#f.
(or (eq? (car lat) a) (member? a (cdr lat)))
where
\(a\) is liver
and
lat is (bagels and lox)

What is the value of (member? a lat) \#f. where \(a\) is liver
```

and
lat is (bagels and lox)

```

\section*{This space for doodling}

What is (rember a lat) where \(a\) is mint and lat is (lamb chops and mint jelly)
(lamb chops and jelly)
"Rember" stands for remove a member.
(rember a lat)
where \(a\) is mint
and
lat is (lamb chops and
mint flavored mint jelly)
(rember a lat)
where \(a\) is toast
and
lat is (bacon lettuce and tomato)
(bacon lettuce and tomato).
(rember a lat)
(coffee tea cup and hick cup).
where \(a\) is cup
and
lat is (coffee cup tea cup and hick cup)

What does (rember a lat) do?
It takes an atom and a lat as its arguments, and makes a new lat with the first occurrence of the atom in the old lat removed.

What steps should we use to do this?

First we will test (null? lat)—The First Commandment.

And if (null? lat) is true?

What do we know if (null? lat) is not true?

Is there any other question we should ask about the lat?

We know that there must be at least one atom in the lat.
Return ().

No. Either a lat is empty or it contains at least one atom.

What do we do if we know that the lat contains at least one atom?

We ask whether \(a\) is equal to (car lat).

By using (cond

How do we ask if \(a\) is the same as (car lat) (eq? (car lat) \(a\)).

What would be the value of (rember a lat) if (cdr lat). \(a\) were the same as (car lat)

What do we do if \(a\) is not the same as (car lat)

We want to keep (car lat), but also find out if \(a\) is somewhere in the rest of the lat.

How do we remove the first occurrence of \(a\) in the rest of lat
(rember a (cdr lat)).

No.
(lettuce and tomato).
Hint: Write down the function rember and its arguments, and refer to them as you go through the next sequence of questions.

What is the value of (rember a lat) where
\(a\) is bacon
and
lat is (bacon lettuce and tomato)

Now, let's see if this function works. What is (null? lat). the first question?

What do we do now?
else

\section*{What next?}
(eq? (car lat) a)

Move to the next line and ask the next question.

Yes.

Ask the next question.

Yes, so the value is (\(c d r\) lat). In this case, it is the list
(lettuce and tomato).

Is this the correct value?

But did we really use a good example?

What does rember do?

What do we do now?

What is the value of (rember a lat) where \(a\) is and and
lat is (bacon lettuce and tomato)

It takes an atom and a lat as its arguments, and makes a new lat with the first occurrence of the atom in the old lat removed.

Who knows? But the proof of the pudding is in the eating, so let's try another example.

We compare each atom of the lat with the atom \(a\), and if the comparison fails we build a list that begins with the atom we just compared.
Yes, because it is the original list without the atom bacon.

Let us see if our function rember works. What is the first question asked by rember
What do we do now?

\section*{else}
(eq? (car lat) a)

What is the meaning of
(else (rember a (cdr lat)))
(null? lat).

Move to the next line, and ask the next question.

Okay, so ask the next question.

No, so move to the next line.
else asks if else is true-as it always is-and the rest of the line says to recur with \(a\) and (\(c d r l a t\)), where \(a\) is and and
(\(c d r l a t\)) is (lettuce and tomato).
(null? lat)
else
(eq? (car lat) a)

What is the meaning of
(rember a (cdr lat))
(null? lat)
else
Of course.
No, so move to the next line, and ask the next question.
(eq? (car lat) a)

So what is the result?

Is this correct?

What did we do wrong?

How can we keep from losing the atoms bacon and lettuce

No, since (tomato) is not the list
(bacon lettuce and tomato)
with just \(a\)-and-removed.
(cdr lat)-(tomato).
with just \(a\) and removed.

We dropped and, but we also lost all the atoms preceding and.

We use Cons the Magnificent. Remember cons, from chapter 1?

\section*{The Second Commandment}

\section*{Use cons to build lists.}

Let's see what happens when we use cons
```

(define rember
(lambda (a lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) a) (cdr lat))
(else (cons (car lat)
(rember a
(cdr lat)))))))))

```
(bacon lettuce tomato).
Hint: Make a copy of this function with cons and the arguments \(a\) and lat so you can refer to it for the following questions.

What is the value of (rember a lat) where \(a\) is and and
lat is (bacon lettuce and tomato)

What is the first question? (null? lat).

Ask the next question.

Yes, of course.

No, so move to the next line.

It says to cons the car of lat-bacon-onto the value of
(rember a (cdr lat)).
But since we don't know the value of (rember a (cdr lat)) yet, we must find it before we can cons (car lat) onto it.

What is the meaning of (rember a (cdr lat))
(null? lat)
else
(eq? (car lat) a)

What is the meaning of
(cons (car lat)
(rember a
(\(c d r\) lat)))

This refers to the function with lat replaced by (\(c d r\) lat)-(lettuce and tomato).
and
lat is (bacon lettuce and tomato)
What is the meaning of
(cons (car lat)
(rember a
(cdr lat)))
where
\(a\) is and

What is the meaning of (rember a (cdr lat))
(null? lat)
else
\((e q ?(c a r l a t) a)\)

What is the value of the line \(((e q\) ? (car lat) \(a)(c d r\) lat \())\)

Are we finished?

We now have a value for (rember a (cdr lat))
where \(a\) is and
and
(\(c d r\) lat) is (and tomato)
This value is (tomato)
What next?

What is the result when we cons lettuce onto (tomato)

What does (lettuce tomato) represent?
It represents the value of
(cons (car lat)
(rember a
(cdr lat))),
when
lat is (lettuce and tomato)
and
(rember a (cdr lat)) is (tomato).

Not quite. So far we know what
(rember a lat) is when
lat is (lettuce and tomato), but we don't yet know what it is when lat is (bacon lettuce and tomato).

We now have a value for (rember a (cdr lat)) where \(a\) is and and
(\(c d r\) lat) is (lettuce and tomato)
This value is (lettuce tomato)
This is not the final value, so what must we do again?

Recall that, at one time, we wanted to cons bacon onto the value of (rember a (cdr lat)), where
\(a\) was and
and
(\(c d r l a t\)) was (lettuce and tomato).
Now that we have this value, which is
(lettuce tomato), we can cons bacon onto it.

What is the result when we cons bacon onto (lettuce tomato)
(bacon lettuce tomato).

What does (bacon lettuce tomato) represent? \({ }^{\dagger}\)
\(\dagger\) Lunch?

It represents the value of
(cons (car lat) (rember a (cdr lat))),
when
lat is (bacon lettuce and tomato) and
(rember a (cdr lat)) is (lettuce tomato).

Are we finished yet?

Can you put in your own words how we determined the final value
(bacon lettuce tomato)

Yes.

In our words:
"The function rember checked each atom of the lat, one at a time, to see if it was the same as the atom and. If the car was not the same as the atom, we saved it to be consed to the final value later. When rember found the atom and, it dropped it, and consed the previous atoms back onto the rest of the lat."

Can you rewrite rember so that it reflects the above description?

Yes, we can simplify it.
```

(define rember
(lambda (a lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a) (cdr lat))
(else (cons (car lat)
(rember a (cdr lat)))))))

```

Do you think this is simpler?

So why don't we simplify right away?

Let's see if the new rember is the same as the old one. What is the value of the application (rember a lat)
where \(a\) is and and
lat is (bacon lettuce and tomato)

Functions like rember can always be simplified in this manner.

Because then a function's structure does not coincide with its argument's structure.
(null? lat) No.
(eq? (car lat) a) No.
else
Yes, so the value is
(cons (car lat)
(rember a (cdr lat))).

What is the meaning of (cons (car lat)
(rember a (cdr lat)))

This says to refer to the function rember but with the argument lat replaced by (\(c d r\) lat), and that after we arrive at a value for (rember a (cdr lat)) we must cons (car lat)-bacon-onto it.
(null? lat)
(eq? (car lat) a)
else

\author{

}

Yes, so the value is
(cons (car lat)
(rember a (cdr lat))).

What is the meaning of (cons (car lat)
(rember a (cdr lat)))
No.

No.

This says we recur using the function rember, with the argument lat replaced by (\(c d r\) lat), and that after we arrive at a value for (rember a (cdr lat)), we must cons (car lat)-lettuce-onto it.
(null? lat)
No.
(eq? (car lat) a)
Yes.

What is the value of the line (\((e q\) ? (car lat) \(a)(c d r ~ l a t))\)

\section*{Now what?}

Now what?

It is \((c d r\) lat \()\)-(tomato).

Now cons (car lat)—lettuce-onto (tomato).

Now cons (car lat)--bacon-onto (lettuce tomato).

Now that we have completed rember try this example: (rember a lat) where \(a\) is sauce
and
lat is (soy sauce and tomato sauce)
(rember a lat) is (soy and tomato sauce).

What is (firsts \(l\))
(apple plum grape bean).
where
\(l\) is ((apple peach pumpkin)
(plum pear cherry)
(grape raisin pea)
(bean carrot eggplant))

What is (firsts \(l\))
(ace).
where
\(l\) is ((ab) (c d) (ef))

What is (firsts \(l\))
().
where \(l\) is ()

What is (firsts \(l\))
(five four eleven).
where
\(l\) is ((five plums)
(four)
(eleven green oranges))

What is (firsts l)
where
\(l\) is (((five plums) four)
(eleven green oranges)
((no) more))
((five plums) eleven (no)).

In your own words, what does (firsts l) do?

We tried the following:
"The function firsts takes one argument, a list, which is either a null list or contains only non-empty lists. It builds another list composed of the first S-expression of each internal list."
\begin{tabular}{|c|c|}
\hline See if you can write the function firsts & This much is easy: \\
\hline & ```
(define firsts
 (lambda (l)
 (cond
 ((null? l) ...)
 (else (cons ...(firsts (cdr l)))))))
``` \\
\hline Why
\[
\begin{aligned}
& \text { (define firsts } \\
& \text { (lambda }(l) \\
& \ldots .))
\end{aligned}
\] & Because we always state the function name, (lambda, and the argument(s) of the function. \\
\hline Why (cond ...) & Because we need to ask questions about the actual arguments. \\
\hline Why ((null? l) ...) & The First Commandment. \\
\hline Why (else & Because we only have two questions to ask about the list \(l\) : either it is the null list, or it contains at least one non-empty list. \\
\hline Why (else & See above. And because the last question is always else. \\
\hline Why (cons & Because we are building a list-The Second Commandment. \\
\hline Why (firsts (cdr l) ) & Because we can only look at one S-expression at a time. To look at the rest, we must recur. \\
\hline Why ))) & Because these are the matching parentheses for (cond, (lambda, and (define, and they always appear at the end of a function definition. \\
\hline
\end{tabular}

Keeping in mind the definition of (firsts l)
a. what is a typical element of the value of (firsts l)
where
\(l\) is \(((\mathrm{ab})(\mathrm{c} d)(\mathrm{ef}))\)

What is another typical element?

Consider the function seconds
What would be a typical element of the value of (seconds l)
where
\(l\) is \(((a b)(c d)(e f))\)
\(b, d\), or \(f\).
c, or even e.
i
\[
l \text { is }((a b)(c d)(e f))
\]

How do we describe a typical element for (firsts l)
\[
11
\]

As the \(c a r\) of an element of \(l-(c a r(c a r l))\). See chapter 1.

When we find a typical element of (firsts \(l\) ) what do we do with it?
cons it onto the recursion-(firsts \((c d r l))\).

\section*{The Third Commandment}

When building a list, describe the first typical element, and then cons it onto the natural recursion.

With The Third Commandment, we can now fill in more of the function firsts What does the last line look like now?
(else (cons \(\underbrace{(\operatorname{car}(\text { car l))}}_{\begin{array}{c}\text { typical } \\ \text { element }\end{array}} \underbrace{(\text { frsts }(c d r l))}_{\begin{array}{c}\text { natural } \\ \text { recursion }\end{array}})\) ).

What does (firsts l) do
```

(define firsts
(lambda (l)
(cond
((null? l) ...)
(else (cons (car (car l))
(firsts (cdr l)))))))

```
where \(l\) is ( ab ) (c d) (ef))

Nothing yet. We are still missing one important ingredient in our recipe. The first line ( \((n u l l ? l) . .\).\() needs a value for the case\) where \(l\) is the null list. We can, however, proceed without it for now.
(null? l) where \(l\) is ((ab) (c d) (e f)) No, so move to the next line.

What is the meaning of
(cons (car (car l)) (firsts \((c d r l))\) )

It saves (car (carl)) to cons onto (firsts \((c d r l)\) ). To find (firsts \((c d r l)\) ), we refer to the function with the new argument (cdrl).
( \(n u l l ? l\) ) where \(l\) is ((c d) (e f))

What is the meaning of
(cons (car (car l)) (firsts \((c d r l))\) )

No, so move to the next line.
( \(n u l l\) ? \(l\) ) where \(l\) is \(((\mathrm{ef})\) )

What is the meaning of
(cons (car (car l)) (firsts (cdr l)))

No, so move to the next line.

Save (car (car l)), and recur with (firsts \((c d r l))\).
Save (car (car l)), and recur with (firsts \((c d r l))\).
,
(null? l)

Now, what is the value of the line ((null? l) ...)

There is no value; something is missing.

What do we need to cons atoms onto?

For the purpose of consing, what value can we give when ( \(n u l l\) ? \(l\) ) is true?

A list.
Remember The Law of Cons.

Since the final value must be a list, we cannot use \#t or \#f. Let's try (quote ()).

With () as a value, we now have three cons (a c e).
steps to go back and pick up. We need to:
I. either
1. cons e onto ()
2. cons c onto the value of 1
3. cons a onto the value of 2
II. or
1. cons a onto the value of 2
2. cons c onto the value of 3
3. cons e onto ()
III. or
cons a onto
the cons of c onto
the cons of e onto
()

In any case, what is the value of (firsts \(l\) )

With which of the three alternatives do you feel most comfortable?

Correct! Now you should use that one.

What is (insertR new old lat) where
new is topping
old is fudge
and
lat is (ice cream with fudge for dessert)
(insertR new old lat)
where
new is jalapeño
old is and
and
lat is (tacos tamales and salsa)
(ice cream with fudge topping for dessert).
```

(insertR new old lat)
(a b c defgdh).
where
new is e
old is d
and
lat is (a b c d fg d h)

```

In your own words, what does (insert \(R\) new old lat) do?

In our words:
"It takes three arguments: the atoms new and old, and a lat. The function insertR builds a lat with new inserted to the right of the first occurrence of old."

See if you can write the first three lines of the function insertR

\section*{(define insertR}
(lambda (new old lat)
(cond ...)))

Which argument changes when we recur with insert \(R\)
lat, because we can only look at one of its atoms at a time.

How many questions can we ask about the lat?

Two.
A lat is either the null list or a non-empty list of atoms.

Which questions do we ask?

What do we know if (null? lat) is not true?

Which questions do we ask about the first element?

First, we ask (null? lat). Second, we ask else, because else is always the last question.

We know that lat has at least one element.

First, we ask (eq? (car lat) old). Then we ask else, because there are no other interesting cases.

Now see if you can write the whole function insertR
\[
\begin{aligned}
& \text { (define insertR } \\
& \text { (lambda }(\text { new old lat }) \\
& \quad(\text { cond } \\
& \quad\left(\begin{array}{l}
(\text { else } \\
\quad(\text { cond } \\
(\square)))))
\end{array}\right.
\end{aligned}
\]

Here is our first attempt.

\section*{(define insert \(R\)}
(lambda (new old lat) (cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cdr lat)) (else (cons (car lat) (insertR new old ( \((d r\) lat) \())\) )))))))

What is the value of the application
(insertR new old lat)
that we just determined
where
new is topping
old is fudge
and
lat is (ice cream with fudge for dessert)

So far this is the same as rember
What do we do in insert \(R\) when (eq? (car lat) old) is true?
(ice cream with for dessert).
\(\qquad\)
How is this done?

When (car lat) is the same as old, we want to insert new to the right.

Now we have
```

(define insertR
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) old)
(cons new (cdr lat)))
(else (cons (car lat)
(insertR new old
(cdr lat)))))))))

```

Let's try consing new onto (cdr lat).

Yes.

So what is (insertR new old lat) now where
new is topping
old is fudge
and
lat is (ice cream with fudge for dessert)

What still needs to be done?

How can we include old before new

Now let's write the rest of the function insert \(R\)
(ice cream with topping for dessert).

Is this the list we wanted?
No, we have only replaced fudge with topping.

Somehow we need to include the atom that is the same as old before the atom new.

Try consing old onto (cons new (cdr lat)).
\begin{tabular}{|c|}
\hline (define insertR (lambda (new old lat) (cond ((null? lat) (quote ())) (else (cond ( \((\) eq? (car lat) old) (cons old (cons new (cdr lat)))) (else (cons (car lat) (insertR new old ( \((d r ~ l a t))))))))\) ) \\
\hline
\end{tabular}

When new is topping, old is fudge, and lat is (ice cream with fudge for dessert), the value of the application, (insert \(R\) new old lat), is
(ice cream with fudge topping for dessert). If you got this right, have one.

Now try insertL
Hint: insertL inserts the atom new to the left of the first occurrence of the atom old in lat

This much is easy, right?
```

(define insertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) old)
(cons new
(cons old (cdr lat))))
(else (cons (car lat)
(insertL new old
(cdr lat)))))))))

```

For example,
((eq? (car lat) old)
(cons new (cons old (cdr lat))))
could have been
((eq? (car lat) old)
(cons new lat))
since (cons old (cdr lat)) where old is eq? to (car lat) is the same as lat.

Now try subst
Hint: (subst new old lat) replaces the first occurrence of old in the lat with new
For example,
where
new is topping
old is fudge
and
lat is (ice cream with fudge for dessert)
the value is
(ice cream with topping for dessert)
Now you have the idea.

Obviously,
```

(define subst
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) old)
(cons new (cdr lat)))
(else (cons (car lat)
(subst new old
(cdr lat)))))))))

```

This is the same as one of our incorrect attempts at insertR.

Go cons a piece of cake onto your mouth.

Now try subst2
Hint:
(subst2 new o1 o2 lat)
replaces either the first occurrence of 01 or the first occurrence of \(o 2\) by new
For example, where
new is vanilla
01 is chocolate
\(o 2\) is banana
and
lat is (banana ice cream
with chocolate topping)
the value is
(vanilla ice cream with chocolate topping)

\section*{(define subst2}
(lambda (new o1 o2 lat) (cond
((null? lat) (quote ()))
(else (cond
( \((\) eq? (car lat) o1) (cons new (cdr lat)))
((eq? (car lat) o2)
(cons new (cdr lat)))
(else (cons (car lat)
(subst2 new o1 o2
(cdr lat)))))))))

Did you think of a better way?

Replace the two eq? lines about the (car lat) by
((or (eq? (car lat) o1) (eq? (car lat) o2)) (cons new (cdr lat))).

If you got the last function, go and repeat the cake-consing.

Do you recall what rember does?

The function rember looks at each atom of a lat to see if it is the same as the atom \(a\). If it is not, rember saves the atom and proceeds. When it finds the first occurrence of \(a\), it stops and gives the value ( \(c d r\) lat), or the rest of the lat, so that the value returned is the original lat, with only that occurrence of \(a\) removed.

Write the function multirember which gives as its final value the lat with all occurrences of \(a\) removed.


Hint: What do we want as the value when (eq? (car lat) a) is true?
Consider the example
where \(a\) is cup
and
lat is (coffee cup tea cup and hick cup)

\section*{(define multirember}
(lambda (a lat) (cond
((null? lat) (quote ()))
(else
(cond
((eq? ( car lat) a)
(multirember a (cdr lat)))
(else (cons (car lat)
(multirember a \((\) (cdr lat))))))))))

After the first occurrence of \(a\), we now recur with ( multirember a (cdr lat)), in order to remove the other occurrences.

The value of the application is (coffee tea and hick).

Can you see how multirember works?

\section*{(null? lat)}
else
(eq? (car lat) a)

What is the meaning of
(cons (car lat) (multirember a ( \(c d r\) lat)))
(null? lat)

Possibly not, so we will go through the steps necessary to arrive at the value
(coffee tea and hick).

No, so move to the next line.

Yes.

No, so move to the next line.

Save (car lat)-coffee-to be consed onto the value of (multirember a (cdr lat)) later. Now determine
( multirember a (cdr lat)).

No, so move to the next line.
else
\((e q ?(c a r l a t) a)\)
(null? lat)

\section*{else}
(eq? (car lat) a)

What is the meaning of
(cons (car lat)
(multirember a
( \(c d r\) lat \()\) ))

Naturally.

Yes, so forget (car lat), and determine ( multirember a (cdr lat)).

No, so move to the next line.

\section*{Yes!}

No, so move to the next line.

Save (car lat)—tea-to be consed onto the value of (multirember a (cdr lat)) later. Now determine
( multirember a (cdr lat)).
(null? lat)
else
(eq? (car lat) a)
(null? lat)
(eq? (car lat) a)

What is the meaning of
(cons (car lat)
(multirember a (cdr lat)))

Yes, so forget (car lat), and determine
(multirember a (cdr lat)).

No, so move to the next line.

No, so move to the next line.

Save (car lat)—and-to be consed onto the value of (multirember a (cdr lat)) later. Now determine
(multirember a (cdr lat)).
(null? lat)
(eq? (car lat) a)

What is the meaning of
(cons (car lat)
(multirember a ( \(c d r\) lat)))

No, so move to the next line.

No, so move to the next line.

Save (car lat)-hick-to be consed onto the value of (multirember a (cdr lat)) later. Now determine
(multirember a (cdr lat)).
(null? lat)
(eq? (car lat) a)
(null? lat)

Are we finished?

What do we do next?

Are we finished now?
Yes.
We cons coffee onto (tea and hick).
We cons the most recent (car lat) we have-hick-onto ().
Yes, so forget (car lat), and determine ( multirember a (cdr lat)).
No, so move to the next line.
(multtrember a (cdr lat)).

Yes, so the value is ().

No, we still have several conses to pick up.

We cons and onto (hick).

We cons tea onto (and hick).
Mevar

Now write the function multiinsertR


\section*{(define multiinsert \(R\)}
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
\[
((e q ?(\text { car lat }) \text { old })
\]
(cons (car lat) (cons new
(multiinsert \(R\) new old ( \(c d r \quad l a t))))\) )
(else (cons (car lat)
(multiinsertR new old \((c d r ~ l a t))))))))\) )

It would also be correct to use old in place of (car lat) because we know that (eq? (car lat) old).

Is this function defined correctly?
```

(define multiinsertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old)
(cons new
(cons old
(multiinsertL new old
lat))))
(else (cons (car lat)
(multiinsertL new old
(cdr lat)))))))))

```

Not quite. To find out why, go through (multiinsertL new old lat)
where
new is fried
old is fish
and
lat is (chips and fish or fish and fried).

Was the terminal condition ever reached?

No, because we never get past the first occurrence of old.

Now, try to write the function multiinsertL again:
(define multiinsertL
(lambda (new old lat)
(cond

(else
```

(define multiinsertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else

```
(cond
((eq? (car lat) old)
(cond
                    ( \(\quad\) _ \(\quad\) )
                        \((\) _

\section*{The Fourth Commandment}

\section*{(preliminary)}

Always change at least one argument while recurring. It must be changed to be closer to termination. The changing argument must be tested in the termination condition: when using \(c d r\), test termination with null?.

Now write the function multisubst

```

(define multisubst
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) old)
(cons new
(multisubst new old
(cdr lat))))
(else (cons (car lat)
(multisubst new old
(cdr lat)))))))))

```

12 Turubrerciccaictes


Is 14 an atom?

Is (atom? \(n\) ) true or false where
\(n\) is 14

Is -3 a number?
Yes,
but we do not consider negative numbers.

\section*{Is 3.14159 a number?}

Are - 3 and 3.14159 numbers?

What is (add1 \({ }^{1} n\) )
68.
where \(n\) is 67

\footnotetext{
\({ }^{1}\) L: \(1+\)
S: (define add1
(lambda (n)
\((+\) n 1))))
}

What is (add1 67)
Also 68,
because we don't need to say "where \(n\) is 67 " when the argument is a number.

What is (sub1 \({ }^{1} n\) )
4. where \(n\) is 5

\footnotetext{
\({ }^{1}\) L: 1-
S: (define subl
(lambda (n)
(- n 1)))
}

What is (sub1 0)

Is (zero? \(\left.{ }^{1} 0\right)\) true or false?

1 L: zerop

Is (zero? 1492) true or false?

What is ( \(\& 46\) 12)

Try to write the function \(\&\)
Hint: It uses zero? add \(1^{1}\) and sub1 \({ }^{1}\)

1 Remember to use our definitions for add1 and sub1.

But didn't we just violate The First Commandment?

\section*{(define \({ }^{1}{ }^{1}\)}
(lambda ( \(n \mathrm{~m}\) )
(cond
( \((\) zero? \(m\) ) \(n\) )
(else (add1 \((\downarrow n(\) sub1 m) \())\) )))
Wasn't that easy?

\footnotetext{
\({ }^{1} \mathrm{~L}, \mathrm{~S}\) : This is like +. Write it as o+ (see preface).
}

If zero? is like null? is add1 like cons

Yes, but we can treat zero? like null? since zero? asks if a number is empty and null? asks if a list is empty.

Yes! cons builds lists and add1 builds numbers.

What is (-143)

What is (-179)
8.

What is ( -1825 )
No answer. There are no negative numbers.

Try to write the function -
Hint: Use sub1
How about this:
```

(define - }\mp@subsup{}{}{1
(lambda (}n\textrm{m}\mathrm{)
(cond
((zero?m) n)
(else (sub1 (-n (sub1 m)))))))

```
\({ }^{1}\) L, S: This is like -. Write it as o- (see preface).

Can you describe how ( \(-n m\) ) works?

Is this a tup?
(2 1137947 6)

Is this a tup?
(8555555)

Is this a tup?
(1 28 apple 4 3)

Is this a tup?
(3 (74) 13 9)

It takes two numbers as arguments, and reduces the second until it hits zero. It subtracts one from the result as many times as it did to cause the second one to reach zero.

Yes: tup is short for tuple.

Yes, of course, it is also a list of numbers.

No, it is just a list of atoms.

No, because it is not a list of numbers.
(74) is not a number.

Is this a tup?
()

Yes, it is a list of zero numbers. This special case is the empty tup.

What is (addtup tup) where
tup is (15 67123 )

What is (addtup tup)
where
tup is (3 528 )
43.
18.

What does addtup do?
It builds a number by totaling all the numbers in its argument.

What is the natural way to build numbers from a list?

Use \(\&\) in place of cons: \& builds numbers in the same way as cons builds lists.

When building lists with cons
0.
the value of the terminal condition is ()
What should be the value of the terminal condition when building numbers with \&

What is the natural terminal condition for a (null? l).
list?

What is the natural terminal condition for a (null? tup). tup?

When we build a number from a list of numbers, what should the terminal condition line look like?
(( null? tup) 0), just as ((null? l) (quote ())) is often the terminal condition line for lists.

What is the terminal condition line of addtup
\[
((n u l l ? ~ t u p) 0)
\]

How is a lat defined?

How is a tup defined?

What is used in the natural recursion on a list?

What is used in the natural recursion on a tup?

Why?

It is either an empty list, or it contains an atom, (car lat), and a rest, (cdr lat), that is also a lat.

It is either an empty list, or it contains a number and a rest that is also a tup.
(cdr lat).
(cdr tup).

How many questions do we need to ask about a list?

Because the rest of a non-empty list is a list and the rest of a non-empty tup is a tup.

Two.

How many questions do we need to ask about a tup?

How is a number defined?

Two, because it is either empty or it is a number and a rest, which is again a tup.

What is the natural terminal condition for numbers?

It is either zero or it is one added to a rest, where rest is again a number.
(zero? \(n\) ).

What is the natural recursion on a number?
(sub1 n).

How many questions do we need to ask
Two. about a number?

\section*{The First Commandment}

\section*{(first revision)}

When recurring on a list of atoms, lat, ask two questions about it: (null? lat) and else.
When recurring on a number, \(n\), ask two questions about it: (zero? \(n\) ) and else.

What does cons do?

What does addtup do?

What is the terminal condition line of addtup

It builds lists.

It builds a number by totaling all the numbers in a tup.

What is the natural recursion for addtup
(addtup (cdr tup)).

What does addtup use to build a number?
It uses \(\&\), because \(\&\) builds numbers, too!

Fill in the dots in the following definition:
```

(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else ...))))

```

Here is what we filled in:
\((\leftrightarrow(c a r ~ t u p)(a d d t u p(c d r ~ t u p)))\).
Notice the similarity between this line, and the last line of the function rember:
(cons (car lat) (rember a (cdr lat))).

What is ( \(\times 53\) )

What is ( \(\times 134\) )
52.

What does ( \(\times n m\) ) do?

What is the terminal condition line for \(\times\) \(((z e r o ? m) 0)\), because \(n \times 0=0\).

Since (zero? \(m\) ) is the terminal condition, \(m\) sub1. must eventually be reduced to zero. What function is used to do this?

\section*{The Fourth Commandment}
(first revision)
Always change at least one argument while recurring. It must be changed to be closer to termination. The changing argument must be tested in the termination condition: when using \(c d r\), test termination with null? and when using sub1, test termination with zero?.

What is another name for ( \(\times n(s u b 1 m)\) ) in It's the natural recursion for \(\times\). this case?

Try to write the function \(\times\)
```

(define }\mp@subsup{}{}{1
(lambda (}nm\mathrm{)
(cond
((zero?m) 0)
(else (\& n(\timesn(sub1 m)))))))

```

\footnotetext{
\({ }^{1} \mathrm{~L}, \mathrm{~S}:\) This is like *.
}
\begin{tabular}{|c|c|}
\hline What is ( \(\times 123\) ) & 36, but let's follow through the function one time to see how we get this value. \\
\hline (zero? \(m\) ) & No. \\
\hline What is the meaning of \((\leftrightarrow n(\times n(s u b 1 \mathrm{~m}))\) ) & \begin{tabular}{l}
It adds \(n\) (where \(n=12\) ) to the natural recursion. If \(\times\) is correct then
\[
(\times 12(\text { sub1 } 3))
\] \\
should be 24.
\end{tabular} \\
\hline What are the new arguments of ( \(\times n m\) ) & \(n\) is 12, and \(m\) is 2. \\
\hline (zero? m) & No. \\
\hline What is the meaning of \((\nleftarrow n(\times n(s u b 1 m)))\) & It adds \(n\) (where \(n=12)\) to ( \(\times n(\) sub1 \(m)\) ). \\
\hline What are the new arguments of ( \(\times n m\) ) & \(n\) is 12, and \(m\) is 1. \\
\hline (zero? m) & No. \\
\hline What is the meaning of \((\nleftarrow n(\times n(s u b 1 m)))\) & It adds \(n\) (where \(n=12)\) to ( \(\times n(\) sub1 \(m)\) ). \\
\hline What is the value of the line ( \((\) zero? \(m) 0\) ) & 0 , because (zero? \(m\) ) is now true. \\
\hline Are we finished yet? & No. \\
\hline
\end{tabular}

What is the value of the original application?
Add 12 to 12 to 12 to 0 yielding 36 , Notice that \(n\) has been fed \(m\) times.

Argue, using equations, that \(x\) is the conventional multiplication of nonnegative integers, where \(n\) is 12 and \(m\) is 3 .
\[
\begin{aligned}
(\times 123) & =12+(\times 122) \\
& =12+12+(\times 121) \\
& =12+12+12+(\times 120) \\
& =12+12+12+0
\end{aligned}
\]
which is as we expected. This technique works for all recursive functions, not just those that use numbers. You can use this approach to write functions as well as to argue their correctness.

Again, why is 0 the value for the terminal condition line in \(\times\)

Because 0 will not affect + . That is, \(n+0=n\).

\section*{The Fifth Commandment}

When building a value with \(\&\), always use 0 for the value of the terminating line, for adding 0 does not change the value of an addition.
When building a value with \(\times\), always use 1 for the value of the terminating line, for multiplying by 1 does not change the value of a multiplication.
When building a value with cons, always consider () for the value of the terminating line.

What is (tup+ tup1 tup2)
(11 111111 11).
where
tup1 is (3 69114 )
and
tup2 is (85 207 )

What is (tup+ tup1 tup2)
where
tup1 is (2 3)
and
\(t u p 2\) is (4 6)

What does (tup+ tup1 tup2) do?

What is unusual about tup+

It adds the first number of tup1 to the first number of tup2, then it adds the second number of tup1 to the second number of tup2, and so on, building a tup of the answers, for tups of the same length.

It looks at each element of two tups at the same time, or in other words, it recurs on two tups.

If you recur on one tup how many questions do you have to ask?

Two, they are (null? tup) and else.

Four: if the first tup is empty or non-empty, and if the second tup is empty or non-empty.

Do you mean the questions
Yes.
(and (null? tup1) (null? tup2))
(null? tup1)
(null? tup2)
and
else

Can the first tup be () at the same time as the second is other than ()

No, because the tups must have the same length.

Does this mean
(and (null? tup1) (null? tup2))
and
else
are the only questions we need to ask?

Yes,
because (null? tup1) is true exactly when (null? tup2) is true.

Write the function tup +
(define tup+
(lambda (tup1 tup2)
(cond
((and (null? tup1) (null? tup2)) (quote ()))
(else
(cons ( + (car tup1) (car tup2)) (tup+
(cdr tup1) (cdr tup2)))))))

What are the arguments of \(\&\) in the last line? (car tup1) and (car tup2).

What are the arguments of cons in the last line?
( \(\leftarrow(\) car tup1) \((\) car tup2 \())\) and (tup+ (cdr tup1) (cdr tup2)).

What is (tup+ tup1 tup2)
where
tup1 is (3 7)
and
tup2 is (4 6)
(null? tup1)
(cons
( \(\&\) (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))

But let's see how it works.

No.
cons 7 onto the natural recursion:
(tup+ (cdr tup1) ( \(c d r\) tup2)).

Why does the natural recursion include the \(c d r\) of both arguments?

Because the typical element of the final value uses the car of both tups, so now we are ready to consider the rest of both tups.
```

(null? tup1)
No.
where
tup1 is now (7)
and
tup2 is now (6)

```
```

(cons
(\&(car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))

```
cons 13 onto the natural recursion.
(null? tup1)
Yes.

Then, what must be the value?
(), because (null? tup2) must be true.

What is the value of the application?
(7 13). That is, the cons of 7 onto the cons of 13 onto ().
```

What problem arises when we want
(tup+ tup1 tup2)
where
tup1 is (3 7)
and
tup2 is (4 6 8 1)

```
    No answer, since tup1 will become null
    before tup2.
    See The First Commandment: We did not
    ask all the necessary questions!
    But, we would like the final value to be
    (7 138 1).

Can we still write tup+ even if the tups are
Yes! not the same length?

What new terminal condition line can we add to get the correct final value?

What is (tup+ tup1 tup2) where
tup1 is (3 781 )
and
tup2 is (4 6)

Add
((null? tup1) tup2).

No answer, since tup2 will become null before tup1.

See The First Commandment: We did not ask all the necessary questions!

What do we need to include in our function?

What does the second new line look like?
((null? tup2) tup1).

Here is a definition of tup+ that works for any two tups:
```

(define tup+
(lambda (tup1 tup2)
(cond
((and (null? tup1) (null? tup2))
(quote ()))
((null? tup1) tup2)
((null? tup2) tup1)
(else
(cons (\& (car tup1) (car tup2))
(tup+
(cdr tup1)(cdr tup2)))))))

$$
\begin{aligned}
& \text { (else } \\
& \begin{array}{l}
\text { (cons }(+(\text { car tup1 })(\text { car tup2 })) \\
\quad(\text { tup }+ \\
\quad(c d r \text { tup1 })(\text { cdr tup2 }))))))
\end{array}
\end{aligned}
$$

```

Can you simplify it?

Does the order of the two terminal conditions matter?

\section*{(define tup+}
(lambda (tup1 tup2)
(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else
(cons ( \(\&(\) car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))))))

No.

Is else the last question?

What is (> 12 133)
\#f-false.

What is (> 120 11)
\#t-true.

On how many numbers do we have to recur? Two, \(n\) and \(m\).

How do we recur?
With (sub1 n) and (sub1 m).

When do we recur?
When we know neither number is equal to 0 .

How many questions do we have to ask about \(n\) and \(m\)

Can you write the function \(>\) now using zero? and sub1

How about

\section*{(define >}
(lambda ( \(n \mathrm{~m}\) )
(cond
((zero? m) \#t )
( \((\) zero? \(n) \# \mathrm{f})\)
(else \((>(\) sub1 \(n)(\) sub1 m) \())\) )) \()\)

No, try it for the case where \(n\) and \(m\) are the same number. Let \(n\) and \(m\) be 3 .

Is the way we wrote ( \(>n m\) ) correct?
(zero? 3)
(zero? 3)

What is the meaning of ( \(>(\) sub1 \(n)(\) sub1 \(m)\) )
(zero? 2)
(zero? 2)

What is the meaning of
(> (sub1 n) (sub1 m))
(zero? 1)
(zero? 1)

What is the meaning of
( \(>(\) sub1 \(n)(\) sub1 \(m)\) )

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments reduced by one.

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments closer to zero by one.

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments reduced by one.

Is this correct?

Does the order of the two terminal conditions matter? matter?

No, because 3 is not greater than 3 .

Think about it.

Does the order of the two terminal conditions matter?

Does the order of the two previous answers matter?

How can we change the function \(>\) to take care of this subtle problem?

Yes. Think first, then try.

\section*{Try it out!}

Switch the zero? lines:
(define >
(lambda ( \(n \mathrm{~m}\) ) (cond
((zero? \(n) \# \mathrm{f})\)
( \((\) zero? \(m) \# \mathrm{t})\)
(else \((>(\) sub1 \(n)(\) sub1 m) \())))\) )
\[
\text { What is }(<46)
\] \#t.
(<83)
\#f.
(<66)
\#f.

Now try to write <
```

(define <
(lambda (n m)
(cond
((zero?m) \#f)
((zero? n) \#t)
(else (< (sub1 n)(sub1 m))))))

```

Here is the definition of \(=\)
```

(define $=$
(lambda ($n \mathrm{~m}$)
(cond
$(($ zero? $m)(z e r o ? n))$
((zero? n) \#f)
(else (=(sub1 n)(sub1 m))))))

```
(define \(=\)
(lambda ( \(n \mathrm{~m}\) )

\section*{(cond}
( \((>n m) \# f)\)
((<nm) \#f)
(else \#t)))

Rewrite \(=\) using \(<\) and \(>\)

Does this mean we have two different functions for testing equality of atoms?
( \(\uparrow\) 1 1 )
( \(\uparrow 2\) 3)
(个 5 3)

Now write the function \(\uparrow\)
Hint: See the The First and Fifth Commandments.

Yes, they are \(=\) for atoms that are numbers and \(e q\) ? for the others.
1.
8.
125.

\section*{(define \(\uparrow^{1}\)}
(lambda ( \(n \mathrm{~m}\) )
(cond
((zero? m) 1)
\((\) else \((\times n(\uparrow n(s u b 1 m)))))))\)

\footnotetext{
\({ }^{1} \mathrm{~L}\), S: This is like expt.
}

What is a good name for this function?
```

(define ???
(lambda (}n\textrm{m}\mathrm{)
(cond
((<nm)0)
(else (add1 (??? (-n m)m)))))

```

We have never seen this kind of definition before; the natural recursion also looks strange.

What does the first question check?

And what happens in the second line?

So what does the function do?

And what do we call this?

What is \((\div 154)\)

How do we get there?
\[
\begin{aligned}
(\div 154) & =1+(\div 114) \\
& =1+(1+(\div 74)) \\
& =1+(1+(1+(\div 34))) \\
& =1+(1+(1+0))
\end{aligned}
\]

> Wouldn't a (ham and cheese on rye) be good right now?

\section*{Don't forget the mustard!}

What is the value of (length lat) where
lat is (hotdogs with mustard sauerkraut and pickles)
6.
5.
where
lat is (ham and cheese on rye)

Now try to write the function length

What is (pick n lat) where \(n\) is 4 and
lat is (lasagna spaghetti ravioli
macaroni meatball)
```

(define length
(lambda (lat)
(cond
((null? lat) 0)
(else (add1 (length (cdr lat)))))))

```
macaroni.

What is (pick 0 lat) where lat is (a)

No answer.
```

(define pick
(lambda (n lat)
(cond
((zero? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))
(define pick
(lambda (n lat) (cond
((zero? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))

```

What is (rempick n lat) where \(n\) is 3 and
lat is (hotdogs with hot mustard)
(hotdogs with mustard).
Try to write the function pick

Now try to write rempick
```

(define rempick
(lambda (n lat)
(cond
((zero? (sub1 n)) (cdr lat))
(else (cons (car lat)
(rempick (sub1 n)
(cdr lat)))))))

```

Is (number? \({ }^{1}\) a) true or false where \(a\) is tomato

False.
were \(a\) is
\({ }^{1}\) L: numberp

Is (number? 76) true or false? True.

Can you write number? which is true if its argument is a numeric atom and false if it is anthing else?

No: number?, like add1, sub1, zero?, car, cdr, cons, null?, eq?, and atom?, is a primitive function.

Now using number? write the function no-nums which gives as a final value a lat obtained by removing all the numbers from the lat. For example, where
lat is ( 5 pears 6 prunes 9 dates) the value of (no-nums lat) is (pears prunes dates)

\section*{(define no-nums}
(lambda (lat) (cond
((null? lat) (quote ()))
(else (cond
((number? (car lat))
(no-nums (cdr lat)))
(else (cons (car lat) (no-nums \((c d r ~ l a t))))))))\) )

Now write all-nums which extracts a tup from a lat using all the numbers in the lat.

\section*{(define all-nums}
(lambda (lat)
(cond
((null? lat) (quote ()))
(else
(cond
((number? (car lat))
(cons (car lat)
(all-nums (cdr lat))))
(else (all-nums (cdr lat))))))))

Write the function eqan? which is true if its two arguments (a1 and a2) are the same atom. Remember to use \(=\) for numbers and \(e q\) ? for all other atoms.

\section*{(define eqan?}
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2))
(= a1 a2))
((or (number? a1) (number? a2))
\#f)
(else (eq? a1 a2)))))

Can we assume that all functions written using \(e q\) ? can be generalized by replacing \(e q\) ? by eqan?

Now write the function occur which counts the number of times an atom \(a\) appears in a lat
(define occur
(lambda (a lat)
(cond
(
(else
(cond


Write the function one? where (one? \(n\) ) is \#t if \(n\) is 1 and \(\# f\) (i.e., false) otherwise.
(define one?
(lambda ( \(n\) ) (cond
((zero? \(n\) ) \#f)
(else (zero? (sub1 n))))))
or
(define one?
(lambda ( \(n\) ) (cond
(else (= \(n 1)\) ))))

Guess how we can further simplify this function, making it a one-liner.

By removing the (cond ...) clause:
(define one?
(lambda ( \(n\) )
\[
(=n \quad 1))
\]

Now rewrite the function rempick that removes the \(n^{\text {th }}\) atom from a lat. For example, where
\(n\) is 3
and
lat is (lemon meringue salty pie)
the value of (rempick \(n\) lat) is
(lemon meringue pie)
Use the function one? in your answer.
Moncocis
(define rempick
(lambda ( \(n\) lat) (cond
((one? \(n)(c d r ~ l a t))\)
(else (cons (car lat) (rempick (sub1 n) ( \((d r\) lat \()))))\) ))

\section*{(20) \\ 
}


What is (rember* al) ((coffee) ((tea)) (and (hick))). where \(a\) is cup
and
\(l\) is ((coffee) cup ((tea) cup)
(and (hick)) cup)
"rember*" is pronounced "rember-star."

What is (rember* al) where \(a\) is sauce and
\(l\) is \((((\) tomato sauce \())\)
((bean) sauce)
(and ((flying)) sauce))
(((tomato))
((bean))
(and ((flying)))).

Now write rember* \(\dagger\)
Here is the skeleton:
\[
\begin{aligned}
& \begin{array}{l}
\text { (define rember* } \\
\text { (lambda }(\text { a } l) \\
\quad(\text { cond }
\end{array} \\
& \quad(\square)= \\
& \quad(\square))
\end{aligned}
\]
\(\dagger\) "...*" makes us think "oh my gawd."
(lat? l)
where
\(l\) is (((tomato sauce))
((bean) sauce)
(and ((flying)) sauce))
```

(define rember*
(lambda (a l)
(cond
((null? l) (quote ()))
((atom? (car l))
(cond
((eq? (car l) a)
(rember* a (cdr l)))
(else (cons (car l)
(rember* a (cdr l))))))
(else (cons (rember* a (car l))
(rember* a (cdr l)))))))

```

Using arguments from one of our previous examples, follow through this to see how it works. Notice that now we are recurring down the car of the list, instead of just the \(c d r\) of the list.
\#f.

Is (car l) an atom where
\(l\) is (((tomato sauce)) ((bean) sauce)
(and ((flying)) sauce))

What is (insertR* new old l)
where
new is roast
old is chuck
and
\(l\) is ((how much (wood)) could
((a (wood) chuck))
(((chuck)))
(if (a) ((wood chuck))) could chuck wood)

Now write the function insertR* which inserts the atom new to the right of old regardless of where old occurs.


How are insertR* and rember* similar?
Each function asks three questions.

\section*{The First Commandment}
(final version)
When recurring on a list of atoms, lat, ask two questions about it: (null? lat) and else.
When recurring on a number, \(n\), ask two questions about it: (zero? \(n\) ) and else.
When recurring on a list of S-expressions, \(l\), ask three question about it: (null? l), (atom? (car l)), and else.

How are insertR* and rember* similar?
Each function recurs on the car of its argument when it finds out that the argument's car is a list.

How are rember* and multirember different?

How are insert \(R^{*}\) and rember* similar?

How are all *-functions similar?

Why?

The function multirember does not recur with the car. The function rember* recurs with the car as well as with the \(c d r\). It recurs with the car when it finds out that the car is a list.

They all ask three questions and recur with the car as well as with the \(c d r\), whenever the car is a list.

Because all *-functions work on lists that are either
- empty,
- an atom consed onto a list, or
- a list consed onto a list.

\section*{The Fourth Commandment}
(final version)
Always change at least one argument while recurring. When recurring on a list of atoms, lat, use (cdr lat). When recurring on a number, \(n\), use (sub1 \(n\) ). And when recurring on a list of S-expressions, \(l\), use ( \(c a r l\) ) and ( \(c d r l\) ) if neither (null? l) nor (atom? (car l)) are true.
It must be changed to be closer to termination. The changing argument must be tested in the termination condition:
when using \(c d r\), test termination with null? and when using sub1, test termination with zero?.

What is a better name for occursomething
occur*.
```

(occursomething a l)
5.
where
a is banana
and
l is ((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy))
5.
where
a is banana
and
l is ((banana)
(split (((banana ice)))
(cream (banana)) sherbet))
(banana)
(bread)
(banana brandy))

```

Write occur*

\section*{(define occur*}
(lambda (a l)
(cond

(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? (carl) a)
(add1 (occur* a (cdr l))))
(else (occur* \(a(c d r l))))\) )
(else ( \(+(\) occur* \(a(\) car l)) \()\)
(occur* \(a(c d r l))))))\) )
(subst* new old l)
where
new is orange
old is banana
and
\(l\) is ((banana) (split (((banana ice)))
(cream (banana)) sherbet))
(banana)
(bread)
(banana brandy))
((orange)
(split ((((orange ice))) (cream (orange)) sherbet))
(orange)
(bread)
(orange brandy)).

Write subst*
(define subst*
(lambda (new old l) (cond

(define subst*
(lambda (new old l) (cond
((null? l) (quote ()))
((atom? (car l))
(cond
( \(e q\) ? (car l) old )
(cons new
(subst* new old (cdr l))))
(else (cons (car l)
(subst* new old \((c d r l)))))\) )
(else
(cons (subst* new old (car l)) (subst* new old \((c d r l))))))\) )

What is (insertL* new old l) where
new is pecker
old is chuck
and
\(l\) is ((how much (wood))
could
((a (wood) chuck))
(((chuck)))
(if (a) ((wood chuck)))
could chuck wood)
((how much (wood)) could
((a (wood) pecker chuck))
(((pecker chuck)))
(if (a) ((wood pecker chuck))) could pecker chuck wood).

Write insertL*

\section*{(define insertL*}
(lambda (new old l) (cond

```

(define insertL*
(lambda (new old l)
(cond
((null? l) (quote ()))
((atom? (car l))
(cond
((eq? (car l) old)
(cons new
(cons old
(insertL* new old
(cdr l)))))
(else (cons (car l)
(insertL* new old
(cdr l))))))
(else (cons (insertL* new old
(car l))
(insertL* new old
(cdr l)))))))

```
(member* a l)
where \(a\) is chips
and
\(l\) is ((potato) (chips ((with) fish) (chips)))
\#t, because the atom chips appears in the list \(l\).

Write member*
(define member*
    (lambda (a l)
        (cond
            \((\square)\)
(define member*
(lambda (a l)
(cond
((null? l) \#f)
((atom? (car l)) (or (eq? (carl) a)
(member* \(a(c d r l)))\) )
(else (or (member* a (car l)) (member* \(a(c d r l)))))\) ))
```

What is (member* a l)
\#t.

```
where
\(a\) is chips
and
\(l\) is ((potato) (chips ((with) fish) (chips)))

Which chips did it find?
((potato) (chips ((with) fish) (chips))).

What is (leftmost l)
potato.
where
\(l\) is ((potato) (chips ((with) fish) (chips)))

What is (leftmost l)
hot.
where
\(l\) is (((hot) (tuna (and))) cheese)

What is (leftmost l)
where
\(l\) is \((((()\) four) \() 17\) (seventeen))

What is (leftmost (quote ()))

Can you describe what leftmost does?

No answer.
o answer.

Is leftmost a *-function?
It works on lists of S-expressions, but it only recurs on the car.

Does leftmost need to ask questions about all three possible cases?

No, it only needs to ask two questions. We agreed that leftmost works on non-empty lists that don't contain empty lists.

Now see if you can write the function leftmost
```

(define leftmost
(lambda (l)
(cond
(\square_-_)))

```

\section*{(define leftmost}
(lambda (l) (cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))

Do you remember what (or ...) does?
(or ...) asks questions one at a time until it finds one that is true. Then (or ...) stops, making its value true. If it cannot find a true argument, the value of (or ...) is false.

What is
\#f.
(and (atom? (car l))
\[
(e q ?(\operatorname{car} l) x))
\]
where
\(x\) is pizza
and
\(l\) is (mozzarella pizza)

Why is it false?

Since (and ...) asks (atom? (carl)), which is true, it then asks (eq? (car l) \(x\) ), which is false; hence it is \#f.

What is
(and (atom? (car l))
(eq? \((\operatorname{carl} l) x)\) )
where
\(x\) is pizza
and
\(l\) is ((mozzarella mushroom) pizza)

Why is it false?

Since (and ...) asks (atom? (car l)), and ( carl) is not an atom; so it is \#f.

Give an example for \(x\) and \(l\) where
(and (atom? (carl))
(eq? \((\operatorname{carl}) x)\) )
is true.

Here's one:
\(x\) is pizza
and
\(l\) is (pizza (tastes good)).

Put in your own words what (and ...) does.

We put it in our words:
"(and ...) asks questions one at a time until it finds one whose value is false. Then (and ...) stops with false. If none of the expressions are false, (and ...) is true."

True or false: it is possible that one of the arguments of (and ...) and (or ...) is not considered? \({ }^{1}\)
```

1 (cond ...) also has the property of not considering all of
its arguments. Because of this property, however, neither
(and ...) nor (or ...) can be defined as functions in terms
of (cond ...), though both (and ...) and (or ...) can be
expressed as abbreviations of (cond ...)-expressions:
(and \alpha\beta)}=(\mathrm{ cond (}\alpha\beta)(\mathrm{ else \#f))
and
(or \alpha\beta)}=(\mathrm{ cond (}\alpha\#t)(\mathrm{ else }\beta)

```

True, because (and ...) stops if the first argument has the value \#f, and (or ...) stops if the first argument has the value \#t.

\section*{(eqlist? l1 l2)}
where
\(l 1\) is (strawberry ice cream)
and
l2 is (strawberry ice cream)
\#t.
(eqlist? l1 l2)
\#f.
where
\(l 1\) is (strawberry ice cream)
and
l2 is (strawberry cream ice)
(eqlist? l1 l2)
\#f.
where
\(l 1\) is (banana ((split)))
and
l2 is ((banana) (split))
(eqlist? l1 l2)
\#f, but almost \#t.
where
\(l 1\) is (beef ((sausage)) (and (soda)))
and
l2 is (beef ((salami)) (and (soda)))
(eqlist? l1 l2)
where
\(l 1\) is (beef ((sausage)) (and (soda)))
and
l2 is (beef ((sausage)) (and (soda)))

What is eqlist?
It is a function that determines if two lists are equal.

How many questions will eqlist? have to ask Nine. about its arguments?

Can you explain why there are nine questions?

Here are our words:
"Each argument may be either
- empty,
- an atom consed onto a list, or
- a list consed onto a list.

For example, at the same time as the first argument may be the empty list, the second argument could be the empty list or have an atom or a list in the car position."

Write eqlist? using eqan?
```

(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) \#t)
((and (null? l1) (atom? (car l2)))
\#f)
((null? l1) \#f)
((and (atom? (car l1)) (null? l2))
\#f)
((and (atom? (car l1))
(atom? (car l2)))
(and (eqan? (car l1) (car l2))
(eqlist?(cdr l1) (cdr l2))))
((atom? (car l1)) \#f)
((null? l2) \#f)
((atom? (car l2)) \#f)
(else
(and (eqlist? (car l1) (car l2))
(eqlist?(cdr l1)(cdr l2)))))))

```

Is it okay to ask (atom? (car l2)) in the second question?

Yes, because we know that the second list cannot be empty. Otherwise the first question would have been true.

And why is the third question (null? l1)

At that point, we know that when the first argument is empty, the second argument is neither the empty list nor a list with an atom as the first element. If (null? l1) is true now, the second argument must be a list whose first element is also a list.

True.
For (eqlist? (quote ()) l2) to be true, l2 must also be the empty list.

True or false: if the first argument is () eqlist? responds with \#t in only one case.

Does this mean that the questions
(and (null? l1) (null? l2))
and
(or (null? l1) (null? l2))
suffice to determine the answer in the first three cases?

Yes. If the first question is true, eqlist? responds with \#t ; otherwise, the answer is \#f.

Rewrite eqlist?
```

(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) \#t)
((or (null? l1) (null? l2)) \#f)
((and (atom? (car l1))
(atom? (car l2)))
(and (eqan? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2))))
((or (atom? (car l1))
(atom? (car l2)))
\#f)
(else
(and (eqlist? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2)))))))

```

What is an S-expression?
An S-expression is either an atom or a (possibly empty) list of S-expressions.

How many questions does equal? ask to determine whether two S-expressions are the same?

Four. The first argument may be an atom or a list of S-expressions at the same time as the second argument may be an atom or a list of S-expresssions.

\section*{Write equal?}
(define equal?
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eqan? s1 s2))
((atom? s1) \#f)
((atom? s2) \#f)
(else (eqlist? s1 s2)))))

Why is the second question (atom? s1)

And why is the third question (atom? s2)

Can we summarize the second question and the third question as
(or (atom? s1) (atom? s2))

If it is true, we know that the first argument is an atom and the second argument is a list.

By the time we ask the third question we know that the first argument is not an atom. So all we need to know in order to distinguish between the two remaining cases is whether or not the second argument is an atom. The first argument must be a list.

\section*{Simplify equal?}
```

(define equal?
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eqan? s1 s2))
((or (atom? s1) (atom? s2))
\#f)
(else (eqlist? s1 s2)))))

```

Does equal? ask enough questions?

Now, rewrite eqlist? using equal?

Yes.
The questions cover all four possible cases.

\section*{(define eqlist?}
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) \#t )
((or (null? l1) (null? l2)) \#f)
(else
(and (equal? (car l1) (car l2))
(eqlist? \((c d r ~ l 1)(c d r ~ l 2)))))))\)

\section*{The Sixth Commandment}

Simplify only after the function is correct.

Here is rember after we replace lat by a list \(l\) of S -expressions and \(a\) by any S-expression.

\section*{(define rember}
(lambda (s l) (cond
((null? l) (quote ()))
((atom? (car l))
(cond
((equal? (car l) s) (cdr l))
(else (cons (car l)
(rember \(s(c d r l))))\) ))
(else (cond
((equal? (car l) s) (cdr l))
(else (cons (car l)
(rember \(s\) \(((c d r l))))))))\)

Obviously!
(define rember
(lambda (s l)

\section*{(cond}
((null? l) (quote ()))
(else (cond
((equal? (car l) s) (cdr l))
(else (cons (car l)
(rember s
\(((d r l))))))))\) )

Can we simplify it?

And how does that differ?

Is rember a "star" function now?

Why not?

Can rember be further simplified?

The function rember now removes the first matching S-expression \(s\) in \(l\), instead of the first matching atom \(a\) in lat.

No.

Because rember recurs with the \(c d r\) of \(l\) only.

Yes, the inner (cond ...) asks questions that the outer (cond ...) could ask!

Do it!
```

(define rember
(lambda (s l)
(cond
((null? l) (quote ()))
((equal? (car l) s) (cdr l))
(else (cons (car l)
(rember s(cdr l)))))))

```

Does this new definition look simpler?

And does it work just as well?

Yes, it does!

Yes, because we knew that all the cases and all the recursions were right before we simplified.

We can't. Before we can ask (eq? (car l) old) we need to know that (car l) is an atom.

And that saved us this time from getting it wrong.

Can all functions that use eq? and = be generalized by replacing \(e q\) ? and \(=\) by the function equal?

Not quite; this won't work for eqan?, but will work for all others. In fact, disregarding the trivial example of eqan?, that is exactly what we shall assume.

\section*{(6)
}


Is 1 an arithmetic expression?

Is 3 an arithmetic expression?

Is \(1+3\) an arithmetic expression?

Is \(1+3 \times 4\) an arithmetic expression?

Is cookie an arithmetic expression?

And, what about \(3 \uparrow y+5\)

What is an arithmetic expression in your words?

Yes.

Yes, of course.

Yes!

Definitely.

Yes. Are you almost ready for one?

Yes.

In ours:
"For the purpose of this chapter, an arithmetic expression is either an atom (including numbers), or two arithmetic expressions combined by,\(+ \times\), or \(\uparrow\)."
a.

What is (quote a)

What is (quote + )
The atom + , not the operation \(\&\).

The atom \(\times\), not the operation \(\times\).

Is (eq? (quote a) \(y\) ) true or false
True. where \(y\) is a

Is (eq? \(x y\) ) true or false where \(x\) is a and
\(y\) is a

That's the same question again. And the answer is still true.

Is \((n+3)\) an arithmetic expression?

Could we think of \((n+3)\) as an arithmetic expression?

Not really, since there are parentheses around \(n+3\). Our definition of arithmetic expression does not mention parentheses.

What would you call \((n+3)\)

Why is \((n+3)\) a good representation?

True or false: (numbered? \(\boldsymbol{x}\) ) where \(x\) is 1

How do you represent \(3+4 \times 5\)
\((3+(4 \times 5))\).

True or false: (numbered? \(y\) ) where \(y\) is \((3+(4 \uparrow 5))\)

True or false: (numbered? \(z\) ) where \(z\) is ( \(2 \times\) sausage)

True.
\[
(3+(4 \times 5))
\]

Yes, if we keep in mind that the parentheses are not really there.

We call it a representation for \(n+3\).

\section*{Because}
1. \((n+3)\) is an S-expression.

It can therefore serve as an argument for a function.
2. It structurally resembles \(n+3\).

True.

False, because sausage is not a number.

It is a function that determines whether a representation of an arithmetic expression contains only numbers besides the,\(+ \times\), and \(\uparrow\).

Now can you write a skeleton for numbered?

What is the first question?

What is \((e q\) ? \((c a r(c d r a e x p))(\) quote +\()) \quad\) It is the second question.

Can you guess the third one?
(eq? \((c a r(c d r\) aexp \())(\) quote \(\times))\) is perfect.

And you must know the fourth one.
(eq? \((c a r(c d r\) aexp \())(\) quote \(\uparrow))\), of course.

Should we ask another question about aexp

Why do we ask four, instead of two, questions about arithmetic expressions? After all, arithmetic expressions like \((1+3)\) are lats.

No! So we could replace the previous question by else.

Because we consider \((1+3)\) as a representation of an arithmetic expression in list form, not as a list itself. And, an arithmetic expression is either a number, or two arithmetic expressions combined by + , \(\times\), or \(\uparrow\).

Now you can almost write numbered?

Why do we ask (number? aexp) when we know that \(a \exp\) is an atom?

Here is our proposal:
```

(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
((eq? (car (cdr aexp)) (quote +))
...)
((eq? (car (cdr aexp)) (quote }\times\mathrm{))
...)
((eq? (car (cdr aexp)) (quote \uparrow))
...))))

```

Because we want to know if all arithmetic expressions that are atoms are numbers.

What do we need to know if the aexp consists of two arithmetic expressions combined by +

We need to find out whether the two subexpressions are numbered.

In which position is the first subexpression?

In which position is the second subexpression?

It is the car of aexp.

So what do we need to ask?

What is the second answer?
(numbered? (car aexp)) and
( \(n\) numbered? (car (cdr (cdr aexp)))).
Both must be true.
(and (numbered? (car aexp))
(numbered? \((\operatorname{car}(c d r(c d r\) aexp \()))))\)

Try numbered? again.
```

(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
((eq? (car (cdr aexp)) (quote +))
(and (numbered? (car aexp))
(numbered?
(car (cdr (cdr aexp))))))
((eq? (car (cdr aexp)) (quote }\times\mathrm{))
(and (numbered? (car aexp))
(numbered?
(car (cdr (cdr aexp))))))
((eq? (car (cdr aexp)) (quote T))
(and (numbered? (car aexp))
(numbered?
(car (cdr (cdr aexp)))))))))

```

Since aexp was already understood to be an arithmetic expression, could we have written numbered? in a simpler way?

Yes:
```

(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
(else
(and (numbered? (car aexp))
(numbered?
(car (cdr (cdr aexp)))))))))

```

Because we know we've got the function
right.

What is (value u) where \(\boldsymbol{u}\) is 13
13.

Why can we simplify?

No answer.
(value nexp) returns what we think is the natural value of a numbered arithmetic expression.
(value \(y\) )
where
```

 y is (1+(3\uparrow4))
 y is $(1+(3 \uparrow 4))$

```
(value \(z\) )
where \(z\) is cookie
82.

We hope.


And in general?
By recurring with value on the subexpressions.

\section*{The Seventh Commandment}

Recur on the subparts that are of the same nature:
- On the sublists of a list.
- On the subexpressions of an arithmetic expression.

Give value another try.
```

(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (car (cdr nexp)) (quote +))
(}+\mathrm{ (value (car nexp))
(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) (quote }\times\mathrm{))
(}\times\mathrm{ (value (car nexp))
(value (car (cdr (cdr nexp))))))
(else
(\uparrow (value (car nexp))
(value
(car (cdr (cdr nexp)))))))))

```

Can you think of a different representation of There are several of them. arithmetic expressions?

Could (3 \(4+\) ) represent \(3+4\)

Could (+ 3 4)

Or (plus 34 )
Yes.

Is (+ (× 36 ) ( \(\uparrow 82\) )) a representation of an Yes. arithmetic expression?

Try to write the function value for a new kind of arithmetic expression that is either:
- a number
- a list of the atom + followed by two arithmetic expressions,
- a list of the atom \(\times\) followed by two arithmetic expressions, or
- a list of the atom \(\uparrow\) followed by two arithmetic expressions.

What about

\section*{(define value}
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (car nexp) (quote + ))
( + (value (cdr nexp))
(value ( \(c d r(c d r n e x p))))\) )
((eq? (car nexp) (quote \(\times\) ))
( \(\times\) (value (cdr nexp))
(value ( \(c d r(c d r \operatorname{nexp})))))\)
(else
( \(\uparrow\) (value ( \(c d r\) nexp \()\) )
(value ( \((d r(c d r \operatorname{nexp})))))))\) )

You guessed it.

Let's try an example.
```

(atom? nexp)
where
nexp is (+ 1 3)
No.
where $n e x p$ is (+ 13)

```

It's wrong.
(+ 13 ).
(eq? (car nexp) (quote + ))
where
    \(n e x p\) is (+ 13 )

Yes.
(eq? (car nexp) (quote + ))
\(n e x p\) is (+ 13 )

And now recur.

What is ( \(c d r\) nexp)
where
\(n \exp\) is (+13)

Yes.
(13).
(13) is not our representation of an arithmetic expression.

No, we violated The Seventh Commandment. (13) is not a subpart that is a representation of an arithmetic expression! We obviously recurred on a list. But remember, not all lists are representations of arithmetic expressions. We have to recur on subexpressions.

By taking the \(c a r\) of the \(c d r\). representation of an arithmetic expression?

Is \((c d r(c d r n e x p))\) an arithmetic expression where
nexp is (+ 13 )

No, the \(c d r\) of the \(c d r\) is (3), and (3) is not an arithmetic expression.

Again, we were thinking of the list (+13) instead of the representation of an arithmetic expression.

Taking the \(c a r\) of the \(c d r\) of the \(c d r\) gets us back on the right track.

What do we mean if we say the car of the \(c d r\) of nexp

The first subexpression of the representation of an arithmetic expression.

Let's write a function 1st-sub-exp for arithmetic expressions.

Why do we ask else
(define 1 st-sub-exp
(lambda (aexp) (cond
(else (car (cdr aexp))))))

Can we get by without (cond ...) if we don't need to ask questions?

Because the first question is also the last question.

Yes, remember one-liners from chapter 4.
```

(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))

```

Write 2nd-sub-exp for arithmetic expressions.

\section*{(define 2nd-sub-exp}
(lambda (aexp)
( \(\operatorname{car}(\operatorname{cdr}(c d r a e x p)))))\)

Finally, let's replace (car nexp) by (operator nexp)

\section*{(define operator}
(lambda (aexp)
(car aexp)))

Now write value again.
```

(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (operator nexp) (quote +))
(\& (value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp))))
((eq? (operator nexp) (quote }\times\mathrm{))
(\times (value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp))))
(else
((value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))

```

Can we use this value function for the first representation of arithmetic expressions in this chapter?

Yes, by changing 1st-sub-exp and operator.

\section*{Do it!}
```

(define 1st-sub-exp
(lambda (aexp)
(car aexp)))

```
(define operator
(lambda (aexp)
(car (cdr aexp))))

Yes, because we used help functions to hide the representation.

\section*{The Eighth Commandment}

\section*{Use help functions to abstract from representations.}

Have we seen representations before?

For what entities have we used representations?

Numbers are representations?

Yes, we just did not tell you that they were representations. need for numbers?
(() () () ) would have served just as well. What about (((())))))? How about (I V)?

Do you remember how many primitives we
Four: number?, zero?, add1, and sub1.
What else could we have used?

Truth-values! Numbers!

Yes. For example 4 stands for the concept four. We chose that symbol because we are accustomed to arabic representations.

Let's try another representation for numbers. () is our choice. How shall we represent zero now?
How is one represented?
(()).

How is two represented?
(() ()).

Got it? What's three?

Write a function to test for zero.
(define sero?
(lambda ( \(n\) )
\[
(\text { null? } n)))^{\prime}
\]

Can you write a function that is like add1

\section*{(define edd1}
(lambda ( \(n\) )
(cons (quote ()) \(n\) )))

What about sub1
\[
\begin{aligned}
& \text { (define zub1 } \\
& (\operatorname{lambda}(n) \\
& (c d r n)))
\end{aligned}
\]

Is this correct? Let's see.

What is (zub1 \(n\) ) where \(n\) is ()
No answer, but that's fine.
- Recall The Law of Cdr.

Rewrite \(\downarrow\) using this representation.

\section*{(define \(\&\)}
(lambda ( \(n \mathrm{~m}\) )
(cond
( sero? \(m\) ) \(n\) )
(else (edd1 ( \(\leftarrow n(z u b 1 m))))))\)

Has the definition of \(\&\) changed?
Yes and no. It changed, but only slightly.

Recall lat?

\section*{Easy:}

\section*{(define lat?}
(lambda ( \(l\) ) (cond
((null? l) \#t )
((atom? (car l)) (lat? (cdr l))) (else \#f))))

But why did you ask?

Do you remember what the value of (lat? ls) \#t, of course. is where \(l s\) is (1 23 )

What is (123) with our new numbers?
\(((())(()())(()()()))\).

It is very false.
\(l s\) is \(((())(()())(()()()))\)

\footnotetext{
Is that bad?
}

You must beware of shadows.

46
[FT


Is this a set?
(apple peaches apple plum)

No, since apple appears more than once.

True or false: (set? lat) where
lat is (apples peaches pears plums)
\#t, because no atom appears more than once.

How about (set? lat) where lat is ()
\#t, because no atom appears more than once.

Try to write set?
```

(define set?
(lambda (lat)
(cond
((null? lat) \#t)
(else
(cond
((member? (car lat) (cdr lat))
\#f)
(else (set?(cdr lat))))))))

```

Simplify set?
```

(define set?
(lambda (lat)
(cond
((null? lat) \#t)
((member? (car lat) (cdr lat)) \#f)
(else (set? (cdr lat))))))

```

Does this work for the example (apple 3 pear 49 apple 3 4)

Were you surprised to see the function member? appear in the definition of set?

Yes, since member? is now written using equal? instead of eq?.

You should not be, because we have written member? already, and now we can use it whenever we want.

What is (makeset lat) where
lat is (apple peach pear peach plum apple lemon peach)

Try to write makeset using member?
(apple peach pear plum lemon).
```

(define makeset

```
(define makeset
    (lambda (lat)
    (lambda (lat)
        (cond
        (cond
            ((null? lat) (quote ()))
            ((null? lat) (quote ()))
            ((member? (car lat) (cdr lat))
            ((member? (car lat) (cdr lat))
            (makeset (cdr lat)))
            (makeset (cdr lat)))
            (else (cons (car lat)
            (else (cons (car lat)
                        (makeset (cdr lat)))))))
```

 (makeset (cdr lat)))))))
    ```

We hope so. But don't be afraid: it's right.

Using the previous definition, what is the result of (makeset lat) where
lat is (apple peach pear peach plum apple lemon peach)

Are you surprised to see how short this is?
(pear plum apple lemon peach).

Try to write makeset using multirember
```

(define makeset
(lambda (lat)
(cond
((null? lat) (quote ()))
(else (cons (car lat)
(makeset
(multirember (car lat)
(cdr lat))))))))

```

What is the result of (makeset lat) using this second definition where
lat is (apple peach pear peach plum apple lemon peach)

Describe in your own words how the second definition of makeset works.

Here are our words:
"The function makeset remembers to cons the first atom in the lat onto the result of the natural recursion, after removing all occurrences of the first atom from the rest of the lat."

Does the second makeset work for the example
(apple 3 pear 49 apple 34 )

Yes, since multirember is now written using equal? instead of eq?.
\#t, because each atom in set1 is also in set2.
What is (subset? set1 set2) where
set1 is (5 chicken wings)
and
set2 is (5 hamburgers
2 pieces fried chicken and light duckling wings)

What is (subset? set1 set2) \#f.
where
set1 is (4 pounds of horseradish) and
set2 is (four pounds chicken and 5 ounces horseradish)

Write subset?
```

(define subset?
(lambda (set1 set2)
(cond
((null? set1) \#t)
(else (cond
((member?(car set1) set2)
(subset? (cdr set1) set2))
(else \#f))))))

```

Can you write a shorter version of subset?
```

(define subset?
(lambda (set1 set2)
(cond
((null? set1) \#t)
((member?(car set1) set2)
(subset? (cdr set1) set2))
(else \#f))))

```

Try to write subset? with (and ...)
```

(define subset?
(lambda (set1 set2)
(cond
((null? set1) \#t)
(else
(and (member? (car set1) set2)
(subset?(cdr set1) set2))))))

```

What is (eqset? set1 set2) \#t.
where
set1 is (6 large chickens with wings)
and
set2 is (6 chickens with large wings)

Write eqset?
```

(define eqset?
(lambda (set1 set2)
(cond
((subset? set1 set2)
(subset? set2 set1))
(else \#f))))

```

Can you write eqset? with only one cond-line?
```

(define eqset?
(lambda (set1 set2)
(cond
(else (and (subset? set1 set2)
(subset? set2 set1))))))

```

Write the one-liner.

\section*{(define eqset?}
(lambda (set1 set2)
(and (subset? set1 set2)
(subset? set2 set1))))

What is (intersect? set1 set2) where
set1 is (stewed tomatoes and macaroni) and
set2 is (macaroni and cheese)
\#t,
because at least one atom in set1 is in set2.

Define the function intersect?
(define intersect?
(lambda (set1 set2) (cond
((null? set1) \#f)
(else
(cond
((member? (car set1) set2) \#t ) (else (intersect? \(((c d r \operatorname{set1}) \operatorname{set} 2)))))))\)

Write the shorter version.
```

(define intersect?
(lambda (set1 set2)
(cond
((null? set1) \#f)
((member? (car set1) set2) \#t)
(else (intersect? (cdr set1) set2)))))

```

Try writing intersect? with (or ...)
(define intersect?
(lambda (set1 set2)
(cond
((null? set1) \#f)
(else (or (member? (car set1) set2) (intersect?
(cdr set1) set2))))))
Compare subset? and intersect?
and

Now you can write the short version of intersect

What is (intersect set1 set2) where
set1 is (stewed tomatoes and macaroni)
set2 is (macaroni and cheese)
(and macaroni).

\section*{(define intersect}
(lambda (set1 set2)
(cond
((null? set1) (quote ()))
((member? (car set1) set2)
(cons (car set1)
(intersect (cdr set1) set2)))
(else (intersect (cdr set1) set2)))))

What is (union set1 set2) where
set1 is (stewed tomatoes and
and
set2 is (macaroni and cheese)

> macaroni casserole)
\[
-1+2
\]

Write union
(stewed tomatoes casserole macaroni and cheese)

號
```

(define union
(lambda (set1 set2)
(cond
((null? set1) set2)
((member? (car set1) set2)
(union (cdr set1) set2))
(else (cons (car set1)
(union (cdr set1) set2))))))

```

What is this function?

\section*{(define \(x x x\)}
(lambda (set1 set2) (cond
((null? set1) (quote ()))
((member? (car set1) set2)
( \(x x x\) (cdr set1) set2))
(else (cons (car set1)
\((x x x(c d r\) set1) set2) \()))))\)

In our words:
"It is a function that returns all the atoms in set1 that are not in set2."
That is, \(x x x\) is the (set) difference function.

What is (intersectall l-set)
(6 and).
where
\(l\)-set is ((6 pears and)
( 3 peaches and 6 peppers)
(8 pears and 6 plums)
(and 6 prunes with some apples))

What is (intersectall l-set)
where
l-set is ((abc) (c a d e) (efghab))
(a).

Now, using whatever help functions you need, write intersectall assuming that the list of sets is non-empty.
(define intersectall
(lambda (l-set) (cond
((null? (cdr l-set)) (car l-set)) (else (intersect (car l-set)
(intersectall (cdr l-set)))))))

Is this a pair? \({ }^{1}\)
(pear pear)

Yes, because it is a list with only two atoms.

\footnotetext{
\({ }^{1}\) A pair in Scheme (or Lisp) is a different but related object.
}

Is this a pair?
(3 7)
Yes.

Is this a pair?
((2) (pair))
(a-pair? l)
where
\(l\) is (full (house))

Yes, because it is a list with only two S-expressions.

Define a-pair?
\#t,
because it is a list with only two
S-expressions.

How can you refer to the first S-expression of a pair?
(define a-pair?
(lambda ( \(x\) )
(cond
((atom? \(x)\) \#f)
((null? \(x)\) \#f)
((null? \((c d r x)) \# f)\)
\(((n u l l ?(c d r(c d r x))) \# \mathrm{t})\)
(else \#f))))

By taking the car of the pair.
\(\qquad\)
How can you refer to the second S-expression of a pair?

How can you build a pair with two atoms?

How can you build a pair with two S-expressions?

You cons the first one onto the cons of the second one onto (). That is, (cons x1 (cons x2 (quote ()))).
By taking the \(c a r\) of the \(c d r\) of the pair.
```

(define first
(lambda (p)
(cond
(else (car p)))))

```

\section*{(define second}
(lambda ( \(p\) ) (cond
\((\) else \((c a r(c d r p))))))\)

\section*{(define build}
(lambda (s1 s2) (cond
(else (cons s1
(cons s2 (quote ())))))))
What possible uses do these three functions have?

They are used to make representations of pairs and to get parts of representations of pairs. See chapter 6.

They will be used to improve readability, as you will soon see.

Redefine first, second, and build as one-liners.

Can you write third as a one-liner?
```

(define third
(lambda (l) $(\operatorname{car}(c d r(c d r l)))))$

```

Is \(l\) a rel where
\(l\) is (apples peaches pumpkin pie)

No, since \(l\) is not a list of pairs. We use rel to stand for relation.

No, since \(l\) is not a set of pairs.

Is \(l\) a rel where
\(l\) is ((apples peaches) (pumpkin pie))

Is \(l\) a rel where
\(l\) is \(((43)(42)(76)(62)(34))\)

Yes.

Yes.

Is rel a fun where
```

rel is ((4 3) (4 2) (7 6) (6 2) (3 4))

```
What is (fun? rel)
where
    rel is \(\left(\binom{8}{3}(4 \mathrm{2})(76)(62)(34)\right)\)

What is (fun? rel) where
rel is ((d 4) (b 0) (b 9) (e 5) (g 4))

Write fun? with set? and firsts
```

(define fun?
(lambda (rel)
(set?(firsts rel))))

```

Is fun? a simple one-liner?
It sure is.

How do we represent a finite function?

You can now write revrel
For us, a finite function is a list of pairs in which no first element of any pair is the same as any other first element.
```

What is (revrel rel)
where
rel is ((8 a) (pumpkin pie) (got sick))
((a 8) (pie pumpkin) (sick got)).
What is (revrel rel)
rel is ((8 a) (pumpkin pie) (got sick))

```
```

(define revrel
(lambda (rel)
(cond
((null? rel) (quote ()))
(else (cons (build
(second (car rel))
(first (car rel)))
(revrel (cdr rel)))))))

```

Would the following also be correct:
```

(define revrel
(lambda (rel)
(cond
((null? rel) (quote ()))
(else (cons (cons
(car (cdr (car rel)))
(cons (car (car rel))
(quote ())))
(revrel (cdr rel)))))))

```

Yes, but now do you see how representation aids readability?

Suppose we had the function revpair that reversed the two components of a pair like this:
```

(define revpair
(lambda (pair)
(build (second pair) (first pair))))

```

How would you rewrite revrel to use this help function?

No problem, and it is even easier to read:
```

(define revrel
(lambda (rel)
(cond
((null? rel) (quote ()))
(else (cons (revpair (car rel))
(revrel (cdr rel)))))))

```

Can you guess why fun is not a fullfun where \(f u n\) is ((8 3) (4 2) (76) (6 2) (3 4))
\(f u n\) is not a fullfun, since the 2 appears more than once as a second item of a pair.

Why is \#t the value of (fullfun? fun) where \(f u n\) is ((8 3) (4 8) (76) (6 2) (3 4))

Because (3 862 4) is a set.

What is (fullfun? fun) where
\[
\begin{aligned}
& \text { fun is ((grape raisin) } \\
& \text { (plum prune) } \\
& \text { (stewed prune)) }
\end{aligned}
\]
\#f.

What is (fullfun? fun)
\#t , because (raisin prune grape) is a set. where
\(f u n\) is ((grape raisin)
(plum prune)
(stewed grape))

Define fullfun?
```

(define fullfun?
(lambda (fun)
(set? (seconds fun))))

```

Can you define seconds
It is just like firsts.

What is another name for fullfun?
one-to-one?

Can you think of a second way to write one-to-one?
```

(define one-to-one?
(lambda (fun)
(fun?(revrel fun))))

```

Is ((chocolate chip) (doughy cookie)) a Yes, and you deserve one now! one-to-one function?

Go and get one!

\section*{Or better yet, make your own.}
```

(define cookies
(lambda ()
(bake
(quote (350 degrees))
(quote (12 minutes))
(mix
(quote (walnuts 1 cup))
(quote (chocolate-chips 16 ounces))
(mix
(mix
(quote (flour 2 cups))
(quote (oatmeal 2 cups))
(quote (salt . }5\mathrm{ teaspoon))
(quote (baking-powder 1 teaspoon))
(quote (baking-soda 1 teaspoon)))
(mix
(quote (eggs 2 large))
(quote (vanilla 1 teaspoon))
(cream
(quote (butter 1 cup))
(quote (sugar 2 cups)))))))))

```

\title{
(9) \\ 
}


Remember what we did in rember and insertL at the end of chapter 5 ?

We replaced eq? with equal?

Can you write a function rember-f that would use either eq? or equal?

No, because we have not yet told you how. By passing a and (b c a) as arguments to rember.

How can you make rember remove the first c from (b ca)

By passing c and (b c a) as arguments to rember.

How can you make rember-f use equal? instead of eq?

What is (rember-f test? a l)
where
test? is \(={ }^{1}\)
\(a\) is 5
and
\(l\) is (6 253 )
 but there is more.

By passing equal? as an argument to rember-f.

How can you make rember remove the first a from (b c a)

What is (rember-f test? a l)
(beans are good).
where
test? is eq?
\(a\) is jelly
and
\(l\) is (jelly beans are good)

And what is (rember-f test? al)
where
test? is equal?
\(a\) is (pop corn)
and
\(l\) is (lemonade (pop corn) and (cake))

Try to write rember-f
```

(define rember-f
(lambda (test? a l)
(cond
((null? l) (quote ()))
(else (cond
((test? (car l) a) (cdr l))
(else (cons (car l)
(rember-f test? a
(cdr l)))))))))

```

This is good!

\footnotetext{
1 L: (funcall test? (car 1) a). Use funcall when invoking a function argument or a function that has not been defuned.
}

What about the short version?

\section*{(define rember-f}
(lambda (test? a l)
(cond
((null? l) (quote ()))
((test? (car l) a) (cdr l))
(else (cons (car l)
(rember-f test? \({ }^{a}\) \((c d r l)))))\) )

How does (rember-f test? a l) act where test? is eq?

And what about (rember-f test? a l) where test? is equal?

Now we have four functions that do almost the same thing.
(rember-f test? a l)
where test? is eq?, acts like rember.

This is just rember with eq? replaced by equal?.

Yes:
rember with \(=\)
rember with equal?
rember with eq?
and
rember-f.

And rember-f can behave like all the others. Let's generate all versions with rember-f.

What kind of values can functions return? Lists and atoms.

What about functions themselves? Yes,
but you probably did not know that yet.

Can you say what (lambda (al) ...) is?
(lambda (al) ...) is a function of two arguments, \(a\) and \(l\).

Now what is
(lambda (a)
(lambda ( \(x\) )
(eq? \(x a)\) ))

It is a function that, when passed an argument \(a\), returns the function
(lambda ( \(x\) )
(eq? \(x a)\) )
where \(a\) is just that argument.

Is this called "Curry-ing?"
Thank you, Moses Schönfinkel (1889-1942).

It is not called "Schönfinkel-ing."

Using (define ...) give the preceding function a name.

Thank you, Haskell B. Curry (1900-1982).

This is our choice.

\footnotetext{
1 L: (defun eq?-c (a)
(function
(lambda (x)
(eq \(x\) a))))
}

What is (eq?-c k) where \(k\) is salad

Its value is a function that takes \(x\) as an argument and tests whether it is eq? to salad.

So let's give it a name using (define ... )
\[
\left(\text { define }^{1} e q ?-s a l a d(e q ?-c k)\right)
\]
where \(k\) is salad

1 L: (setq eq?-salad (eq?-c 'salad)).
Use setq to define a function that can be funcalled.

What is (eq?-salad \(y)^{1} \quad \# \mathrm{t}\). where \(y\) is salad
\({ }^{1}\) L: (funcall eq?-salad \(y\) ), since eq?-salad has not been defuned.

And what is (eq?-salad \(y\) )
\#f.
where \(y\) is tuna

Do we need to give a name to eq?-salad
No, we may just as well ask
\(((e q ?-c x) y)^{1}\)
where
\(x\) is salad
and
\(y\) is tuna.
\({ }^{1}\) L: (funcall (eq?-c \(x\) ) \(y\) ), since (eq?-c \(x\) ) is a function that has not been defuned.

Now rewrite rember- \(f\) as a function of one argument test? that returns an argument like rember with eq? replaced by test?
(define rember-f
(lambda (test?)
(lambda (al)
(cond
((null? l) (quote ()))
((test? (car l)a) (cdr l))
(else (cons (carl)...))))))
is a good start.

Describe in your own words the result of (rember-f test?)
where
test? is eq?

Give a name to the function returned by (rember-f test?)
where
test? is eq?

It is a function that takes two arguments, \(a\) and \(l\). It compares the elements of the list with \(a\), and the first one that is \(e q\) ? to \(a\) is removed.
(define rember-eq? (rember-f test?))
where
test? is eq?.

What is (rember-eq? a l) where \(a\) is tuna
and
\(l\) is (tuna salad is good)

Did we need to give the name rember-eq? to the function (rember-f test?)
where
test? is eq?

No, we could have written
((rember-f test?) al)
where
test? is eq?
\(a\) is tuna
and
\(l\) is (tuna salad is good).

Now, complete the line
(cons (car l)...)
in rember- \(f\) so that rember- \(f\) works.
(define rember-f
(lambda (test?)
(lambda (al)
(cond
((null? l) (quote ()))
((test? \((c a r l) a)(c d r l))\)
(else (cons (car l)
\(((\) rember-f test?) \(a\) \((c d r l)))))))\) )

What is ((rember-f eq?) a \(l\) ) where \(a\) is tuna
and
\(l\) is (shrimp salad and tuna salad)
(shrimp salad and salad).
,

What is ((rember-f eq?) a l)
(equal? eqan? eqlist? eqpair?). where \(a\) is eq?
and
\(l\) is (equal? eq? eqan? eqlist? eqpair?) \({ }^{1}\)

\footnotetext{
\({ }^{1}\) Did you notice the difference between eq? and eq?
Remember that the former is the atom and the latter is the function.
}

And now transform insertL to insertL-f the same way we have transformed rember into rember-f

\section*{(define insertL-f}
(lambda (test?)
(lambda (new old \(l\) )
(cond
((null? l) (quote ()))
((test? (car l) old)
(cons new (cons old (cdr l))))
(else (cons (car l)
((insertL-f test?) new old \((c d r l))))))\) )

And, just for the exercise, do it to insert \(R\)
```

(define insertR-f
(lambda (test?)
(lambda (new old l)
(cond
((null? l) (quote ()))
((test? (car l) old)
(cons old (cons new (cdr l))))
(else (cons (car l)
((insertR-f test?) new old
(cdr l))))))))

```

Are insert \(R\) and insertL similar?

Can you write a function insert-g that would insert either at the left or at the right?

Only the middle piece is a bit different.

If you can, get yourself some coffee cake and relax! Otherwise, don't give up. You'll see it in a minute.

Which pieces differ?
The second lines differ from each other. In insertL it is:
( \(e q\) ? (car l) old)
(cons new (cons old (cdr l)))),
but in insert \(R\) it is:
( \(e q\) ? (car l) old)
(cons old (cons new \((c d r l)))\) ).

Put the difference in words!
We say:
"The two functions cons old and new in a different order onto the \(c d r\) of the list \(l . "\)

So how can we get rid of the difference?

Define a function seq \(L\) that
1. takes three arguments, and
2. conses the first argument onto the result of consing

You probably guessed it: by passing in a function that expresses the appropriate consing.
the second argument onto the third argument.

What is:
```

(define seqR
(lambda (new old l)
(cons old (cons new l))))

```

A function that
1. takes three arguments, and
2. conses the second argument onto the result of consing the first argument onto the third argument.

Do you know why we wrote these functions?

Because they express what the two differing lines in insertL and insert \(R\) express.

Try to write the function insert-g of one argument seq
which returns insertL where seq is seqL
and
which returns insert \(R\) where seq is seqR
```

(define insert-g

```
(lambda (seq)
(lambda (new old \(l\) )
(cond
((null? l) (quote ()))
( (eq? (car l) old)
(seq new old (cdr l)))
(else (cons (car l)
((insert-g seq) new old \((c d r l))))\) ))) \()\)

Now define insertL with insert-g
```

(define insertL (insert-g seqL))

```

And insertR.
(define insertR (insert-g seqR))

Is there something unusual about these two definitions?

Yes. Earlier we would probably have written (define insertL (insert-g seq)) where
\(s e q\) is \(s e q L\)
and
(define insertR (insert-g seq))
where
seq is seq \(R\).
But, using "where" is unnecessary when you pass functions as arguments.

Is it necessary to give names to seqL and seqR

Not really. We could have passed their definitions instead.

Define insertL again with insert-g Do not pass in seqL this time.
(define insertL
(insert-g
(lambda (new old \(l\) )
(cons new (cons old l)))))

Is this better?

Does this look familiar?

Do you remember the definition of subst

Yes, because you do not need to remember as many names. You can
(rember func-name "your-mind") where func-name is seqL.

Here is one.
(define subst
(lambda (new old l) (cond
((null? l) (quote ()))
( \(e q\) ? (car l) old)
(cons new (cdr l)))
(else (cons (car l)
(subst new old \((c d r l)))))\) ))

Define a function like seqL or seqR for subst

And now define subst using insert-g

And what do you think \(y y y\) is
```

(define yyy
(lambda (a l)
((insert-g seqrem) \#f a l)))

```
where
```

(define seqrem
(lambda (new old l)
l))

```

Yes, it looks like insertL or insertR. Just the answer of the second cond-line is different.

What do you think about this?
```

(define seqS
(lambda (new old l)
(cons new l)))

```
    (define subst (insert-g seqS))

Surprise! It is our old friend rember
Hint: Step through the evaluation of (yyy al)
where
\(a\) is sausage
and
\(l\) is (pizza with sausage and bacon).
What role does \#f play?

What you have just seen is the power of abstraction.

\section*{The Ninth Commandment}

\section*{Abstract common patterns with a new function.}

Have we seen similar functions before?

Do you remember value from chapter \(6 ?\)

Do you see the similarities?

The last three answers are the same except for the \(\&, x\), and \(\uparrow\).

Can you write the function atom-to-function which:
1. Takes one argument \(x\) and
2. returns the function \&
if \((e q\) ? \(x\) (quote + ))
returns the function \(\times\)
if \((e q ? x\) (quote \(\times\) )) and
returns the function \(\uparrow\)
otherwise?

Yes, we have even seen functions with similar lines.
```

(define value

```
(define value
    (lambda (nexp)
    (lambda (nexp)
    (cond
    (cond
    ((atom? nexp) nexp)
    ((atom? nexp) nexp)
    ((eq? (operator nexp)
    ((eq? (operator nexp)
            (quote +))
            (quote +))
            (& (value (1st-sub-exp nexp))
            (& (value (1st-sub-exp nexp))
            (value (2nd-sub-exp nexp))))
            (value (2nd-sub-exp nexp))))
            ((eq? (operator nexp)
            ((eq? (operator nexp)
            (quote }\times\mathrm{ ))
            (quote }\times\mathrm{ ))
            (\times (value (1st-sub-exp nexp))
            (\times (value (1st-sub-exp nexp))
            (value (2nd-sub-exp nexp))))
            (value (2nd-sub-exp nexp))))
            (else
            (else
            (\uparrow (value (1st-sub-exp nexp))
            (\uparrow (value (1st-sub-exp nexp))
                            (value (2nd-sub-exp nexp)))))))
```

 (value (2nd-sub-exp nexp)))))))
    ```

What is (atom-to-function (operator nexp)) where
\(n e x p\) is (+ 5 3)

Can you use atom-to-function to rewrite value with only two cond-lines?

The function \(\&\), not the atom + .
nexp is (+53)

Of course.
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
((atom-to-function
(operator nexp))
(value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))

Is this quite a bit shorter than the first version?

Yes, but that's okay. We haven't changed its meaning.

\section*{Time for an apple?}

One a day keeps the doctor away.

Here is multirember again.
```

(define multirember
(lambda (a lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a)
(multirember a (cdr lat)))
(else (cons (car lat)
(multirember a
(cdr lat)))))))

```

No problem.
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
((null? lat) (quote ()))
((test? a (car lat))
(( multirember-f test?) a
(cdr lat)))
(else (cons (car lat)
(( multirember-f test?) \(a\) \((c d r\) lat \()))))))\) )
(shrimp salad salad and).
What is ((multirember-f test?) a lat) where
\(t e s t\) ? is \(e q\) ?
\(a\) is tuna
and
lat is (shrimp salad tuna salad and tuna)

Wasn't that easy? Yes.

Define multirember-eq? using multirember-f
\[
\begin{aligned}
& \text { (define multirember-eq? } \\
& (\text { multirember-f test?)) }
\end{aligned}
\]
where test? is eq?.

As multirember- \(f\) visits all the elements in lat, it always looks for tuna.

Does test? change as multirember-f goes through lat

Can we combine \(a\) and test?

How would it do that?

No, test? always stands for eq?, just as a always stands for tuna.

Well, test? could be a function of just one argument and could compare that argument to tuna.

The new test? takes one argument and compares it to tuna.

Here is one way to write this function.
\[
\begin{aligned}
& \text { (define eq?-tuna } \\
& (e q ?-c k))
\end{aligned}
\]
where \(k\) is tuna
Can you think of a different way of writing this function?

Have you ever seen definitions that contain atoms?

Yes, 0 , (quote \(\times\) ), (quote + ), and many more.

Perhaps we should now write multirember \(T\) which is similar to multirember-f
Instead of taking test? and returning a function, multirember \(T\) takes a function like \(e q\) ?-tuna and a lat and then does its work.

This is not really difficult.
```

(define multiremberT
(lambda (test? lat)
(cond
((null? lat) (quote ()))
((test? (car lat))
(multiremberT test? (cdr lat)))
(else (cons (car lat)
(multirember T test?
$(c d r \operatorname{lat})))))$))

```

What is (multiremberT test? lat) where
test? is eq?-tuna
and
lat is (shrimp salad tuna salad and tuna)
(shrimp salad salad and).

Is this easy?

How about this?
```

(define multirember\&co
(lambda (a lat col)
(cond
((null? lat)
(col (quote ()) (quote ())))
((eq? (car lat) a)
(multirember甘co a
(cdr lat)
(lambda (newlat seen)
(col newlat
(cons (car lat) seen)))))
(else
(multirember\&co a
(cdr lat)
(lambda (newlat seen)
(col (cons (car lat) newlat)
seen)))))))

```

It's not bad.

Now that looks really complicated!

Here is something simpler:
```

(define a-friend
(lambda (x y)
(null?y)))

```

What is the value of
This is not simple.
(multiremberßco a lat col)
where
\(a\) is tuna
lat is (strawberries tuna and swordfish)
and
col is a-friend

So let's try a friendlier example. What is the value of (multirember \(\mathcal{C c o}\) a lat col) where
\(a\) is tuna
lat is ()
and
col is \(a\)-friend
-

Yes, it is simpler. It is a function that takes two arguments and asks whether the second one is the empty list. It ignores its first argument.
\(\qquad\)

\section*{-}

And what is (multirember®co a lat col) where
\(a\) is tuna
lat is (tuna)
and
col is \(a\)-friend
\#t, because \(a\)-friend is immediately used in the first answer on two empty lists, and \(a\)-friend makes sure that its second argument is empty.
multirember \(\mathcal{C}\) co asks
(eq? (car lat) (quote tuna))
where
lat is (tuna).
Then it recurs on ().

The first one is clearly tuna. The third argument is a new function.
col.

The name col is short for "collector." A collector is sometimes called a "continuation."

Here is the new collector：

\section*{（define new－friend} （lambda（newlat seen）
（col newlat
（cons（car lat）seen））））
where
（car lat）is tuna
and
col is \(a\)－friend
Can you write this definition differently？

Do you mean the new way where we put tuna into the definition？
```

（define new－friend
（lambda（newlat seen）
（col newlat （cons（quote tuna）seen））））

```
where
col is \(a\)－friend．

Can we also replace col with \(a\)－friend in such Yes，we can： definitions because col is to \(a\)－friend what （car lat）is to tuna
```

(define new-friend
(lambda (newlat seen)
(a-friend newlat
(cons (quote tuna) seen))))

```

And now？
multirember \(夭 c o\) finds out that（null？lat）is true，which means that it uses the collector on two empty lists．

Which collector is this？

How does \(a\)－friend differ from new－friend

It is new－friend．
new－friend uses \(a\)－friend on the empty list and the value of
（cons（quote tuna）（quote（）））．

And what does the old collector do with such arguments？

What is the value of
（multirember \(夭 c o\) a lat a－friend）
where \(a\) is tuna
and
lat is（and tuna）

It answers \＃f，because its second argument is（tuna），which is not the empty list．

This time around multirember \(夭 c o\) recurs with yet another friend．
```

(define latest-friend
(lambda (newlat seen)
(a-friend (cons (quote and) newlat)
seen)))

```

And what is the value of this recursive use of multirember \(\mathcal{O}\) co
\#f, since (a-friend ls1 ls2)
where
\(l s 1\) is (and)
and
ls2 is (tuna)
is \#f.

What does (multirember®co a lat f) do?

Final question: What is the value of (multirember \(\mathcal{C c o}\) (quote tuna) ls col) where
\(l s\) is (strawberries tuna and swordfish) and
col is

\section*{(define last-friend}
(lambda ( \(x y\) )
(length \(x)\) ))

It looks at every atom of the lat to see whether it is eq? to a. Those atoms that are not are collected in one list \(l s 1\); the others for which the answer is true are collected in a second list ls2. Finally, it determines the value of (f ls1 ls2).

3, because ls contains three things that are not tuna, and therefore last-friend is used on (strawberries and swordfish) and (tuna).

Yes!
It's a strange meal, but we have seen foreign foods before.

\section*{The Tenth Commandment}

Build functions to collect more than one value at a time.

Here is an old friend.
(define multiinsertL
(lambda (new old lat) (cond
((null? lat) (quote ()))
((eq? (car lat) old)

\section*{(cons new}
(cons old
(multiinsertL new old \((c d r\) lat \())\) )))
(else (cons (car lat)
(multiinsertL new old \((c d r \quad l a t)))))))\)

No problem.
```

(define multiinsertR
(lambda (new old lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) old)
(cons old

```
            (cons new
                                    (multiinsertR new old
                                    (cdr lat)))))
            (else (cons (car lat)
                                    (multiinsertR new old
                                    \((c d r\) lat) \())\) )) ))

Do you also remember multiinsert \(R\)

Now try multiinsertLR
Hint: multiinsertLR inserts new to the left of old \(L\) and to the right of oldR in lat if old \(L\) are old \(R\) are different.

This is a way of combining the two functions.
```

(define multiinsertLR
(lambda (new oldL oldR lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) oldL)
(cons new
(cons oldL
(multiinsertLR new oldL oldR
(cdr lat)))))
((eq? (car lat) oldR)
(cons oldR
(cons new
(multiinsertLR new oldL oldR
(cdr lat)))))
(else
(cons (car lat)
(multiinsertLR new oldL oldR
(cdr lat)))))))

```

The function multiinsertLREco is to multiinsertLR what multirember \(\mathcal{E} c o\) is to multirember

Does this mean that multiinsertLREco takes one more argument than multiinsertLR?

Yes, and what kind of argument is it?

It is a collector function.

When multiinsertLRGco is done, it will use col on the new lat, on the number of left insertions, and the number of right insertions. Can you write an outline of multiinsertLREco

Sure, it is just like multiinsertLR.

\section*{(define multiinsertLRGco}
(lambda (new oldL oldR lat col) (cond
\[
\begin{aligned}
& \text { ((null? lat) } \\
& \text { (col (quote ()) } 00) \text { ) } \\
& \text { ((eq? (car lat) oldL) } \\
& \text { ( multiinsertLRBco new oldL oldR } \\
& \quad(\text { cdr lat }) \\
& \quad \text { (lambda (newlat } L R)
\end{aligned}
\]
...)))
((eq? (car lat) oldR)
(multiinsertLREco new oldL oldR (cdr lat)
(lambda (newlat \(L R\) )
...)))
(else
(multiinsertLREco new oldL oldR ( \(c d r\) lat)
(lambda (newlat L R) ...))))))

Why is col used on (quote ()) 0 and 0 when (null? lat) is true?

The empty lat contains neither old \(L\) nor old \(R\). And this means that 0 occurrences of old \(L\) and 0 occurrences of old \(R\) are found and that multiinsertLR will return () when lat is empty.

So what is the value of
(multiinsertLRGco
(quote cranberries)
(quote fish)
(quote chips)
(quote ())
col)

It is the value of (col (quote ()) 00 ), which we cannot determine because we don't know what col is.

Is it true that multiinsertLREco will use the new collector on three arguments when (car lat) is equal to neither old \(L\) nor oldR

Yes, the first is the lat that multiinsertLR would have produced for (cdr lat), oldL, and old \(R\). The second and third are the number of insertions that occurred to the left and right of oldL and oldR, respectively.

Is it true that multiinsertLREco then uses the function col on (cons (car lat) newlat) because it copies the list unless an oldL or an oldR appears?

Yes, it is true, so we know what the new collector for the last case is:
(lambda (newlat \(L R\) ) (col (cons (car lat) newlat) \(L R\) )).

If (car lat) is neither old \(L\) nor old \(R\), we do not need to insert any new elements. So, \(L\) and \(R\) are the correct results for both ( \(c d r\) lat) and all of lat.

Here is what we have so far. And we have even thrown in an extra collector:
```

(define multiinsertLR\&co
(lambda (new oldL oldR lat col)
(cond
((null? lat)
(col (quote ()) 0 0))
((eq? (car lat) oldL)
(multiinsertLR\&co new oldL oldR
(cdr lat)
(lambda (newlat L R)
(col (cons new
(cons oldL newlat))
(add1 L) R))))
((eq? (car lat) oldR)
(multiinsertLR\&co new oldL oldR
(cdr lat)
(lambda (newlat L R)
...)))
(else
(multiinsertLRGco new oldL oldR
(cdr lat)
(lambda (newlat L R)
(col (cons (car lat) newlat)
L R)))))))

```

Can you fill in the dots?

The incomplete collector is similar to the extra collector. Instead of adding one to \(L\), it adds one to \(R\), and instead of consing new onto consing oldL onto newlat, it conses oldR onto the result of consing new onto newlat.

So can you fill in the dots?

Yes, the final collector is
(lambda (newlat \(L R\) )
\[
\begin{aligned}
& (\text { col }(\text { cons oldR }(\text { cons new newlat })) \\
& \quad L(\text { add1 } R))) .
\end{aligned}
\]

What is the value of
(multiinsertLREco new oldL oldR lat col) where
new is salty
old \(L\) is fish
old \(R\) is chips
and
lat is (chips and fish or fish and chips)

It is the value of (col newlat 2 2) where newlat is (chips salty and salty fish or salty fish and chips salty).

Is this healthy?

Do you remember what *-functions are?

Looks like lots of salt. Perhaps dessert is sweeter.

Now write the function evens-only* which removes all odd numbers from a list of nested lists. Here is even?
```

(define even?

```
(define even?
    (lambda (n)
    (lambda (n)
    (=(×(\divn2) 2) n))
```

 (=(×(\divn2) 2) n))
    ```

Now that we have practiced this way of writing functions, evens-only* is just an exercise:

\section*{(define evens-only*} (lambda ( \(l\) )
(cond
```

((null? l) (quote ()))
((atom? (car l))
(cond
((even? (car l))
(cons (car l)
(evens-only* $(c d r ~ l)))$)
(else (evens-only* (cdr l)))))
(else (cons (evens-only* (car l))
(evens-only* (cdr l)))))))

```

What is the value of (evens-only* \(l\) ) where
\(l\) is ((9 128 ) \(310((99) 76) 2)\)

Yes, all *-functions work on lists that are either
- empty,
- an atom consed onto a list, or
- a list consed onto a list.

What is the sum of the odd numbers in \(l\) \(9+1+3+9+9+7=38\). where
\(l\) is ((9 128 ) \(310((99) 76) 2)\)

What is the product of the even numbers in \(l \quad 2 \times 8 \times 10 \times 6 \times 2=1920\). where
\(l\) is ((9128)310((99)76)2)

Can you write the function evens-only* \(\mathcal{C c o}\) It builds a nested list of even numbers by removing the odd ones from its argument and simultaneously multiplies the even numbers and sums up the odd numbers that occur in its argument.

This is full of stars!

Here is an outline. Can you explain what (evens-only*Gco (car l)...) accomplishes?
```

(define evens-only*\&co
(lambda (l col)
(cond
((null? l)
(col (quote ()) 1 0))
((atom? (car l))
(cond
((even? (car l))
(evens-only*Gco (cdr l)

```
                        (lambda (newl \(p s\) )
                        (col (cons (car l) newl)
                            \((\times(c a r i) p) s))))\)
                (else (evens-only*母co (cdr l)
                    (lambda (newl ps)
                        (col newl
                        \(p(\&(\operatorname{car} l) s)))))))\)
        (else (evens-only*\&co (carl)
                            ...)))))

What does the function evens-only* \(\sigma_{c o}\) do after visiting all the numbers in (car l)

It visits every number in the \(c a r\) of \(l\) and collects the list without odd numbers, the product of the even numbers, and the sum of the odd numbers.

And what does the collector do?

Does this mean the unknown collector looks roughly like this:
(lambda (al apas) (evens-only*Eco (cdrl) ...))

It uses evens-only* \(\mathcal{G} c o\) to visit the \(c d r\) of \(l\) and to collect the list that is like ( \(c d r l\) ), without the odd numbers of course, as well as the product of the even numbers and the sum of the odd numbers.

And when (evens-only* \(\mathcal{G} c o(c d r l) \ldots\) ) is done with its job, what happens then?

The yet-to-be-determined collector is used, just as before.

What does the collector for
(evens-only*Éco ( \(c d r l\) ) ...)
do?

It conses together the results for the lists in the \(c a r\) and the \(c d r\) and multiplies and adds the respective products and sums. Then it passes these values to the old collector:
(lambda (al ap as)
(evens-only* \({ }^{*} c o\) ( \(c d r l\) )
(lambda \((d l d p d s)\)
(col (cons al dl) ( \(\times a p d p\) )
\((\& a s d s))))\) ).

Does this all make sense now?

What is the value of
(evens-only* \(\mathrm{Cl}_{\mathrm{co}} \mathrm{l}\) the-last-friend)
where
\(l\) is ((9128)310((99)76)2) and
the-last-friend is defined as follows:
(define the-last-friend
(lambda (newl product sum) (cons sum
(cons product newl))))

\section*{Perfect.}

Whew! Is your brain twisted up now?
Go eat a pretzel; don't forget the mustard.

\section*{(g)}
 (2)


Are you in the mood for caviar

What is (looking a lat) \#t,
where \(a\) is caviar caviar is obviously in lat.
and
lat is (6 24 caviar 573 )
(looking a lat)
\#f.
where \(a\) is caviar
and
lat is (6 2 grits caviar 57 3)

Were you expecting something different?

True enough, but what is the first number
6. in the lat?

And what is the sixth element of lat
7.

And what is the seventh element?
3.

So looking clearly can't find caviar

Here is looking
```

(define looking
(lambda (a lat)
(keep-looking a (pick 1 lat) lat)))

```

\section*{Write keep-looking}

\section*{(looking a lat)}
where \(a\) is caviar
and
lat is (6 24 caviar 573 )

Then we must go looking for it.

\section*{.}

What is (pick 6 lat) where
lat is (6 24 caviar 57 3)

So what do we do?
(keep-looking a 7 lat) where \(a\) is caviar and
lat is (6 24 caviar 573 ).

What is (pick 7 lat)
3.
where
lat is (6 24 caviar 57 3)

So what is (keep-looking a 3 lat) where \(a\) is caviar
and
lat is (6 24 caviar 57 3)

It is the same as
(keep-looking a 4 lat).

Which is?

Write keep-looking

Can you guess what sorn stands for?

What is unusual about keep-looking
\#t.
```

(define keep-looking
(lambda (a sorn lat)
(cond
((number? sorn)
(keep-looking a (pick sorn lat) lat))
(else (eq? sorn a)))))

```

We call this "unnatural" recursion.
(uncall
\(\qquad\)
It is truly unnatural.

Does keep-looking appear to get closer to its goal?

Yes, from all available evidence.

Does it always get closer to its goal?

That is correct. A list may be a tup.
Sometimes the list may contain neither caviar nor grits.

Yes, if we start looking in (7 24756 3), we
will never stop looking.

What is (looking a lat) where \(a\) is caviar and lat is (7 12 caviar 563 )

This is strange!

Yes, it is strange. What happens?

Functions like looking are called partial functions. What do you think the functions we have seen so far are called?

We keep looking and looking and looking

They are called total.

Can you define a shorter function that does not reach its goal for some of its arguments?

For how many of its arguments does eternity reach its goal?

\section*{(define eternity}
(lambda ( \(x\) ) (eternity \(x\) )))

Is eternity partial?

What is (shift \(x\) )
where
\[
x \text { is }((\mathrm{ab}) \mathrm{c})
\]
```

What is (shift x) (a (b (c d))).
where
x is ((a b) (c d))

```

Define shift

Describe what shift does.

This is trivial; it's not even recursive!
```

(define shift
(lambda (pair)
(build (first (first pair))
(build (second (first pair))
(second pair)))))

```

Here are our words:
"The function shift takes a pair whose first component is a pair and builds a pair by shifting the second part of the first component into the second component."

Now look at this function:
```

(define align
(lambda (pora)
(cond
((atom? pora) pora)
((a-pair?(first pora))
(align (shift pora)))
(else (build (first pora)
(align (second pora)))))))

```

What does it have in common with keep-looking

Both functions change their arguments for their recursive uses but in neither case is the change guaranteed to get us closer to the goal.

Why are we not guaranteed that align makes progress?

In the second cond-line shift creates an argument for align that is not a part of the original argument.

Is the new argument at least smaller than the original one?

It does not look that way.

Why not?
The function shift only rearranges the pair it gets.

And?

Can you write a function that counts the number of atoms in align's arguments?

Both the result and the argument of shift have the same number of atoms.

Is align a partial function?
We don't know yet. There may be arguments for which it keeps aligning things.

Is there something else that changes about the arguments to align and its recursive uses?

In what way is the first component simpler?

Doesn't this mean that length* is the wrong function for determining the length of the argument? Can you find a better function?

Yes, there is. The first component of a pair becomes simpler, though the second component becomes more complicated.

It is only a part of the original pair's first component.

A better function should pay more attention to the first component.

How much more attention should we pay to the first component?

Does this mean that the arguments get simpler?

Is align a partial function?

Here is shuffle which is like align but uses revpair from chapter 7 , instead of shift:
(define shuffle
(lambda (pora)
(cond
((atom? pora) pora)
((a-pair? (first pora))
(shuffle (revpair pora)))
(else (build (first pora)
(shuffle (second pora)))))))
    align a partial function?

Yes, the weight*'s of align's arguments become successively smaller.

No, it yields a value for every argument.

The functions shuffle and revpair swap the components of pairs when the first component is a pair.

Does this mean that shuffle is total?

Do you mean something like weight*

What is (weight* \(x\) )
7.
where

And what is (weight* \(x\) ) where \(x\) is (a (b c))

That looks right.
```

(define weight*

```
(define weight*
    (lambda (pora)
    (lambda (pora)
        (cond
        (cond
            ((atom? pora) 1)
            ((atom? pora) 1)
            (else
            (else
                    (&(\times (weight* (first pora)) 2)
                    (weight* (second pora)))))))
```

```
\[
x \text { is }((\mathrm{ab}) \mathrm{c})
\]
    x is ((a b) c)
```

 here
 as (a (b))
 Let's try it. What is the value of (shuffle x) (a (b c)).
where
x is (a (b c))
(shuffle x)
(ab).
where
x is (ab)

Okay, let's try something interesting. What
is the value of (shuffle x)
where
x is $((\mathbf{a b})(c \mathbf{d}))$

To determine this value, we need to find out what (shuffle (revpair pora)) is where pora is ((ab) (c d)).

And how are we going to do that?
We are going to determine the value of (shuffle pora)
where pora is ((c d) (ab)).

Doesn't this mean that we need to know the Yes, we do. value of (shuffle (revpair pora))
where
(revpair pora) is ((a b) (c d))

And?
The function shuffle is not total because it now swaps the components of the pair again, which means that we start all over.

Is this function total?

```
(define C
    (lambda (n)
        (cond
            ((one?n) 1)
            (else
                (cond
                    ((even? n) (C (\divn 2)))
                    (else (C (add1 (× 3 n)))))))))
```

It doesn't yield a value for 0 , but otherwise nobody knows. Thank you, Lothar Collatz (1910-1990).

What is the value of $\left(\begin{array}{lll}A & 1 & 0\end{array}\right)$
2.
(A11)
(A 2 2)

Here is the definition of A

```
(define A
    (lambda (n m)
        (cond
            ((zero? n) (add1 m))
            ((zero?m) (A (sub1 n) 1))
            (else (A (sub1 n)
                (A n (sub1 m)))))))
```

What does A have in common with shuffle and looking

How about an example?

Does A always give an answer?

Then what is (A43)

What does that mean?
The page that you are reading now will have decayed long before we could possibly have calculated the value of $\left(\begin{array}{ll}A & 4\end{array}\right)$.

But answer came there none-
And this was scarcely odd, because They'd eaten every one.
The Walrus and The Carpenter
-Lewis Carroll

Wouldn't it be great if we could write a function that tells us whether some function returns with a value for every argument?

It sure would. Now that we have seen functions that never return a value or return a value so late that it is too late, we should have some tool like this around.

Okay, let's write it.

It sounds complicated. A function can work for many different arguments.

Then let's make it simpler. For a warm-up exercise, let's focus on a function that checks whether some function stops for just the empty list, the simplest of all arguments.

That would simplify it a lot.

Here is the beginning of this function:

(define will-stop?

(lambda (f)
...))
Can you fill in the dots?

What does it do?

That's the easy part: we said that it either returns \#t or \#f, depending on whether the argument stops when applied to ().

Yes, it is. It always returns \#t or \#f.

We know that (length l) is 0 where l is ().

So?
Then the value of (will-stop? length) should be \#t.

Absolutely. How about another example?
What is the value of (will-stop? eternity)

Does this mean the value of (will-stop? eternity) is \#f
(eternity (quote ())) doesn't return a value. We just saw that.

Do we need more examples?

Okay, here is a function that could be an interesting argument for will-stop?
(define last-try
(lambda (x)
(and (will-stop? last-try)
(eternity $x)$)))
What is (will-stop? last-try)
-

Yes, it does.

Perhaps we should do one more example.

What does it do?
\qquad
We need to test it on ()

What is the value of
(and (will-stop? last-try)
(eternity (quote ())))
That depends on the value of
(will-stop? last-try).

There are only two possibilities. Let's say (will-stop? last-try) is \# \mathbf{f}

So (last-try (quote ())) stopped, right?

But didn't will-stop? predict just the opposite?

If we want the value of (last-try (quote ())), we must determine the value of
(and (will-stop? last-try)
(eternity (quote ()))).

So we must have been wrong about (will-stop? last-try)

That's correct. It must return \#t, because will-stop? always gives an answer. We said it was total.

Fine. If (will-stop? last-try) is \#t what is the value of (last-try (quote ()))

Now we just need to determine the value of (and \#t (eternity (quote ()))), which is the same as the value of (eternity (quote ())).

What is the value of (eternity (quote ()))

But that means we were wrong again!

It doesn't have a value. We know that it doesn't stop.

What do you think this means?
Here is our meaning:
"We took a really close look at the two possible cases. If we can define will-stop?, then
(will-stop? last-try)
must yield either \#t or \#f. But it cannot-due to the very definition of what will-stop? is supposed to do. This must mean that will-stop? cannot be defined."

Is this unique?
Yes, it is. It makes will-stop? the first function that we can describe precisely but cannot define in our language.

Is there any way around this problem?

What is (define ...)

This is an interesting question. We just saw that (define ...) doesn't work for will-stop?

No. Thank you,
Alan M. Turing (1912-1954)
and
Kurt Gödel (1906-1978).

So what are recursive definitions?

Is this the function length

What if we didn't have (define ...) anymore? Could we still define length

Hold tight, take a deep breath, and plunge forward when you're ready.

It sure is.

```
(define length
```

(define length
(lambda (l)
(lambda (l)
(cond
(cond
((null? l) 0)
((null? l) 0)
(else (add1 (length (cdr l)))))))

```
            (else (add1 (length (cdr l)))))))
```

Without (define ...) nothing, and especially not the body of length, could refer to length.

What does this function do?

(lambda (l)

(cond
((null? l) 0)
(else (add1 (eternity $(c d r l)))))$)

It determines the length of the empty list and nothing else.

What happens when we use it on a non-empty list?

No answer. If we give eternity an argument, it gives no answer.

What does it mean for this function that looks like length

It just won't give any answer for non-empty lists.
length $_{0}$
because the function can only determine the length of the empty list.

How would you write a function that determines the length of lists that contain one or fewer items?

Well, we could try the following.

```
(lambda (l)
    (cond
    ((null? l) 0)
    (else (add1 (length }\mp@subsup{0}{0}{(cdr l))))))
```

Almost, but (define . . .) doesn't work for length ${ }_{0}$

So, replace length ${ }_{0}$ by its definition.

```
(lambda (l)
    (cond
        ((null? l) 0)
        (else
        (add1
        ((lambda (l)
                                    (cond
                                    ((null? l) 0)
                                    (else (add1
                                    (eternity ( \((d r l)))))\) )
                \((c d r l)))))\) )
```

And what's a good name for this function? That's easy: length ${ }_{\leq 1}$.

Is this the function that would determine the lenghts of lists that contain two or fewer items?

```
(lambda (l)
    (cond
        ((null? l) 0)
        (else
        (add1
        ((lambda (l)
            (cond
                ((null? l) 0)
                        (else
                        (add1
                            ((lambda ( \(l\) )
                                    (cond
                                    ((null? l) 0)
                                    (else
                                    (add1
                                    (eternity
                                    ( \((d r l))))\) ))
                            \((c d r l)))\) ))
            \((c d r l))))\) )
```

Yes, this is length ${ }_{\leq 2}$. We just replace eternity with the next version of length.

Now, what do you think recursion is?

What do you mean?

Well, we have seen how to determine the length of a list with no items, with no more than one item, with no more than two items, and so on. How could we get the function length back?

If we could write an infinite function in the style of length ${ }_{0}$, length ${ }_{\leq 1}$, length ${ }_{\leq 2}, \ldots$, then we could write length ${ }_{\infty}$, which would determine the length of all lists that we can make.

How long are the lists that we can make?

But we can't write an infinite function.

And we still have all these repetitions and patterns in these functions.

Well, a list is either empty, or it contains one element, or two elements, or three, or four, \ldots, or $1001, \ldots$

What do these patterns look like?

Let's do it!

All these programs contain a function that looks like length. Perhaps we should abstract out this function: see The Ninth Commandment.

Do you mean this?

```
((lambda (length)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1 (length (cdr l)))))))
eternity)
```

We need a function that looks just like length but starts with (lambda (length) ...).

Yes, that's okay. It creates length ${ }_{0}$.

Rewrite length ${ }_{\leq 1}$ in the same style.

```
((lambda (f)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1 (f(cdr l)))))))
((lambda (g)
    (lambda (l)
        (cond
            ((null? l) 0)
    (else (add1 (g(cdr l)))))))
    eternity))
```

Do we have to use length to name the argument?

No, we just used f and g. As long as we are consistent, everything's okay.

How about length ≤ 2

```
((lambda (length)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1 (length (cdr l)))))))
    ((lambda (length)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1 (length (cdr l)))))))
    ((lambda (length)
        (lambda (l)
            (cond
                ((null? l) 0)
            (else (add1 (length (cdr l)))))))
    eternity)))
```

True. Let's get rid of them.

Name the function that takes length as an argument and that returns a function that looks like length.

What's a good name for this function? How about $m k$-length for "make length"?

Okay, do this to length ${ }_{0}$
No problem.

```
((lambda (mk-length)
    (mk-length eternity))
    (lambda (length)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1 (length (cdr l))))))))
```

Is this length ≤ 1
((lambda ($m k$-length)
(mk-length (mk-length eternity)))
(lambda (length)
(lambda (l) (cond
((null? l) 0) (else $($ add1 $($ length $(c d r l))))))))$

It sure is. And this is length ${ }_{\leq 2}$.
((lambda ($m k$-length)
($m k$-length
(mk-length
(mk-length eternity))))
(lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else $($ add1 $($ length $(c d r l))))))))$

Can you write length ${ }_{\leq 3}$ in this style?

What is recursion like?

Sure. Here it is.
((lambda ($m k$-length)
($m k$-length
($m k$-length
(mk-length
(mk-length eternity)))))
(lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else $($ add1 $($ length $(c d r l))))))))$

It is like an infinite tower of applications of $m k$-length to an arbitrary function.

Do we really need an infinite tower?

Could we guess how many we need?

When do we find out that we didn't guess a large enough number?

What if we could create another application of mk-length to eternity at this point?

Well, since nobody cares what function we pass to $m k$-length we could pass it $m k$-length initially.

Not really of course. Everytime we use length we only need a finite number, but we never know how many.

Sure, but we may not guess a large enough number.

When we apply the function eternity that is passed to the innermost $m k$-length.

That would only postpone the problem by one, and besides, how could we do that?

Then is this still length ${ }_{0}$
((lambda ($m k$-length)
(mk-length mk-length))
(lambda (length)
(lambda (l) (cond
((null? l) 0)
(else (add1
$($ length $(c d r l)))))))$)

Yes, we could even use $m k$-length instead of length.

```
((lambda (mk-length)
```

(mk-length mk-length))
(lambda ($m k$-length)
(lambda (l) (cond
((null? l) 0)
(else (add1
$(m k-l e n g t h(c d r l))))))))$

All names are equal, but some names are more equal than others. ${ }^{1}$

[^2]True: as long as we use the names consistently, we are just fine.

And $m k$-length is a far more equal name than length. If we use a name like $m k$-length, it is a constant reminder that the first argument to $m k$-length is $m k$-length.

Now that mk-length is passed to $m k$-length can we use the argument to create an additional recursive use?

Yes, when we apply $m k$-length once, we get length ${ }_{\leq 1}$

```
((lambda (mk-length)
    (mk-length mk-length))
    (lambda (mk-length)
        (lambda (l)
        (cond
            ((null? l) 0)
            (else (add1
                                    ((mk-length eternity)
                                    (cdr l))))))))
```

This is a good exercise. Work it out with paper and pencil.

Could we do this more than once?

Yes, just keep passing $m k$-length to itself, and we can do this as often as we need to!

What would you call this function?

```
```

((lambda (mk-length)

```
```

((lambda (mk-length)
(mk-length mk-length))
(mk-length mk-length))
(lambda (mk-length)
(lambda (mk-length)
(lambda (l)
(lambda (l)
(cond
(cond
((null? l) 0)
((null? l) 0)
(else (add1
(else (add1
((mk-length mk-length)
((mk-length mk-length)
(cdr l))))))))

```
```

 (cdr l))))))))
    ```
```

It is length, of course.

It keeps adding recursive uses by passing $m k$-length to itself, just as it is about to expire.

We could extract this new application of $m k$-length to itself and call it length.

One problem is left: it no longer contains the function that looks like length

```
((lambda (mk-length)
    ( \(m k\)-length \(m k\)-length))
    (lambda (mk-length)
    (lambda ( \(l\) )
        (cond
            ((null? l) 0)
            (else (add1
                                    ((mk-length mk-length)
                                    \((\) (cdr \(l))))))))\)
```

Can you fix that?

How about this?

```
```

((lambda ($m k$-length)

```
```

((lambda ($m k$-length)
($m k$-length $m k$-length))
($m k$-length $m k$-length))
(lambda ($m k$-length)
(lambda ($m k$-length)
((lambda (length)
((lambda (length)
(lambda (l)
(lambda (l)
(cond
(cond
((null? l) 0)
((null? l) 0)
(else (add1 (length $(c d r l))))))$)
(else (add1 (length $(c d r l))))))$)
(mk-length mk-length))))

```
```

 (mk-length mk-length))))
    ```
```

Let's see whether it works.

What is the value of
(((lambda (mk-length)
(mk-length mk-length))
(lambda (mk-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length $(c d r l))))))$)
($m k$-length $m k$-length $)$)))
l)
where
l is (apples)

First, we need the value of
((lambda ($m k$-length) ($m k$-length $m k$-length $)$)
(lambda ($m k$-length) ((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else $($ add1 $($ length $(c d r l)))))))$
(mk-length mk-length))))

Yes, this looks just fine.

Okay.

It should be 1 .
$(($ null? l) 0$)$
(else (add1 (length
$(m k$-length $m k$-length $))))$

```
)
```

So we really need the value of
((lambda ($m k$-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length $(c d r l))))))$)
($m k$-length $m k$-length)))
(lambda ($m k$-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
$($ else $($ add1 $($ length $(c d r l)))))))$
(mk-length mk-length))))

But then we really need to know the value of
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length $(c d r l))))))$)
((lambda ($m k$-length)
((lambda (length)
(lambda (l) (cond
((null? l) 0)
(else (add1 (length $(c d r l))))))$)
($m k$-length $m k$-length $)$))
(lambda ($m k$-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length $($ cdr l)))))))
(mk-length mk-length)))))

True enough.

Yes, there is no end to it. Why?

Is this strange?

Because we just keep applying $m k$-length to itself again and again and again ...

But now that we have extracted
($m k$-length $m k$-length)
from the function that makes length
it does not return a function anymore.

It is because $m k$-length used to return a function when we applied it to an argument. Indeed, it didn't matter what we applied it to.

Turn the application of $m k$-length to itself in our last correct version of length into a function:
Here is a different way. If f is a function of
one argument, is (lambda (x) ($f x)$) a
function of one argument?

If ($m k$-length $m k$-length) returns a function of one argument, does
(lambda (x) ($(m k$-length $m k$-length) $x)$) return a function of one argument?

Yes, it is.
No it doesn't. So what do we do?

How?

```
((lambda ( \(m k\)-length)
```

((lambda ($m k$-length)
(mk-length mk-length))
(mk-length mk-length))
(lambda (mk-length)
(lambda (mk-length)
(lambda (l)
(lambda (l)
(cond
(cond
((null? l) 0)
((null? l) 0)
(else (add1
(else (add1
$\frac{((\text { mk-length } m k \text {-length })}{(c d r ~ l)))))))}$

```
                        \(\frac{((\text { mk-length } m k \text {-length })}{(c d r ~ l)))))))}\)
```

Actually,

(lambda (x)

($(m k$-length $m k$-length) $x)$)
is a function!

Okay, let's do this to the application of $m k$-length to itself.
((lambda ($m k$-length)
(mk-length mk-length))
(lambda ($m k$-length)
(lambda (l)
(cond
((null? l) 0)
(else
(add1
(lambda (x) ((mk-length mk-length) $x)$)
$(c d r l))))))))$

Move out the new function so that we get length back.
((lambda ($m k$-length)
(mk-length mk-length))
(lambda ($m k$-length)

```
( (lambda (length)
    (lambda (l)
        (cond
            ((null? l) 0)
            (else
                \((\) add1 \((\) length \((c d r l)))))))\)
    (lambda ( \(x\) )
    \(((m k\)-length \(m k\)-length \() x)))))\)
```

Is it okay to move out the function?

Yes, we just always did the opposite by replacing a name with its value. Here we extract a value and give it a name.

Can we extract the function in the box that looks like length and give it a name?

Yes, it does not depend on mk-length at all!

What did we actually get back?

Let's separate the function that makes length from the function that looks like length

Is this the right function?
Yes.

```
((lambda (le)
```

((lambda (le)
((lambda (mk-length)
((lambda (mk-length)
(mk-length mk-length))
(mk-length mk-length))
(lambda ($m k$-length)
(lambda ($m k$-length)
(le (lambda (x)
(le (lambda (x)
(($m k$-length $m k$-length) $x))$))))
(($m k$-length $m k$-length) $x))$))))
(lambda (length)
(lambda (length)
(lambda (l)
(lambda (l)
(cond
(cond
((null? l) 0)
((null? l) 0)
(else (add1 (length (cdr l))))))))

```
            (else (add1 (length (cdr l))))))))
```

We extracted the original function $m k$-length.

That's easy.

(lambda (le)

((lambda ($m k$-length)
(mk-length mk-length))
(lambda ($m k$-length)
(le (lambda (x)
((mk-length mk-length) $x))$))))

Does this function have a name?

Yes, it is called the applicative-order Y combinator.

(define Y

(lambda (le)
((lambda (f) (ff))
(lambda (f)
(le (lambda (x) ((ff)x))))))

Does (define ...) work again?

Do you now know why Y works?

Sure, now that we know what recursion is.

Read this chapter just one more time and you will.

What is (Y Y)

Does your hat still fit?
Perhaps not after such a mind stretcher.

雨（8）

An entry is a pair of lists whose first list is a set. Also, the two lists must be of equal length. Make up some examples for entries.

Here are our examples:

((appetizer entrée beverage) (paté boeuf vin))

and
((appetizer entrée beverage)
(beer beer beer))
and
((beverage dessert)
((food is) (number one with us))).

How can we build an entry from a set of names and a list of values?

(define new-entry build)

Try to build our examples with this function.

What is (lookup-in-entry name entry)
tastes. where name is entrée
and
entry is ((appetizer entrée beverage)
(food tastes good))

What if name is dessert
In this case we would like to leave the decision about what to do with the user of lookup-in-entry.

How can we accomplish this?
lookup-in-entry takes an additional argument that is invoked when name is not found in the first list of an entry.

How many arguments do you think this extra We think it should take one, name. Why? function should take?

Here is our definition of lookup-in-entry

```
(define lookup-in-entry
    (lambda (name entry entry-f)
        (lookup-in-entry-help name
        (first entry)
        (second entry)
        entry-f)))
```

Finish the function lookup-in-entry-help

```
(define lookup-in-entry-help
    (lambda (name names values entry-f)
        (cond
            (\square - = - - )
```

A table (also called an environment) is a list of entries. Here is one example: the empty table, represented by ()
Make up some others.

(define lookup-in-entry-help

(lambda (name names values entry-f) (cond
((null? names) (entry-f name))
((eq? (car names) name)
(car values))
(else (lookup-in-entry-help name ($c d r$ names) ($c d r$ values) entry-f)))))

Here is another one:
(((appetizer entrée beverage)
(paté boeuf vin))
((beverage dessert)
((food is) (number one with us)))).

Define the function extend-table which takes an entry and a table (possibly the empty one) and creates a new table by putting the new entry in front of the old table.

(define extend-table cons)

What is
(lookup-in-table name table table-f)
where
name is entrée
table is (((entrée dessert)
(spaghetti spumoni))
((appetizer entrée beverage)
(food tastes good)))
and
table-f is (lambda (name) ...)

It could be either spaghetti or tastes, but lookup-in-table searches the list of entries in order. So it is spaghetti.

Write lookup-in-table
Hint: Don't forget to get some help.

(define lookup-in-table

(lambda (name table table-f)
(cond
((null? table) (table-f name))
(else (lookup-in-entry name
(car table)
(lambda (name)
(lookup-in-table name
(cdr table)
table-f)))))))

Can you describe what the following function represents:
(lambda (name)
(lookup-in-table name
(cdr table)
table-f))

This function is the action to take when the name is not found in the first entry.

In the preface we mentioned that sans serif typeface would be used to represent atoms. To this point it has not mattered.
Henceforth, you must notice whether or not an atom is in sans serif.

Remember to be very conscious as to whether or not an atom is in sans serif.

Did you notice that "sans serif" was not in sans serif?

We hope so. This is "sans serif" in sans serif.

Have we chosen a good representation for expressions?

Yes. They are all S-expressions so they can be data for functions.

What kind of functions?
For example, value.

Do you remember value from chapter 6 ?
Recall that value is the function that returns the natural value of expressions.

What is the value of (car (quote (abc)))

We don't even know what (quote (abc)) is.

What is the value of
(cons rep-a (cons rep-b (cons rep-c
(quote ()))))
where
rep- a is a
$r e p-b$ is b
and
rep-c is c

Great. And what is the value of
(cons rep-car (cons (cons rep-quote
(cons
(cons rep-a
(cons rep-b
(cons rep-c (quote ()))))
(quote ())))
(quote ())))
where
rep-car is car
rep-quote is quote
$r e p-a$ is a
$r e p-b$ is b
and
rep-c is c

It is a representation of the expression: (car (quote (abc))).

What is the value of
(car (quote (abc)))

What is (value e) where
e is (car (quote (abc)))

What is (value e)

 wheree is (quote (car (quote (abc))))

```
What is (value e)
7.
where
    \(e\) is (add1 6)
```

What is (value e) where e is 6

6, because numbers are constants.

What is (value e) nothing. where
e is (quote nothing)

What is (value e) where
e is nothing
nothing has no value.

What is (value e) where
e is ((lambda (nothing)
(cons nothing (quote ())))
(quote
(from nothing comes something)))

```
What is (value e)
where
    e is ((lambda (nothing)
    (cond
        (nothing (quote something))
        (else (quote nothing))))
    #t)
```

What is the type of e *const. where
e is 6

What is the type of e
*const.
where
e is \#f

What is (value e) \#f.
where
e is \#f

What is the type of e
*const.
where e is cons

What is (value e)
(primitive car).
where e is car

What is the type of e
*quote.
where
e is (quote nothing)

What is the type of $e \quad{ }^{*}$ identifier. where
e is nothing

What is the type of e
*lambda.
where
e is (lambda ($\mathrm{x} \mathbf{y}$) (cons $\mathrm{x} \mathbf{y})$)

What is the type of e
*application. where
e is ((lambda (nothing) (cond
(nothing (quote something))
(else (quote nothing))))
\#t)

What is the type of e
*cond.
where
e is (cond
(nothing (quote something))
(else (quote nothing)))

How many types do you think there are?

```
We found six:
    *const
    *quote
    *identifier
    *lambda
    *cond
and
    *application.
```

How do you think we should represent types?

If actions are functions that do "the right thing" when applied to the appropriate type of expression, what should value do?

Do you remember atom-to-function from chapter 8 ?

We choose functions. We call these functions "actions."

Below is a function that produces the correct action (or function) for each possible S-expression:

Define the function atom-to-action ${ }^{1}$

[^3]```
(define expression-to-action
```

(define expression-to-action
(lambda (e)
(lambda (e)
(cond
(cond
((atom? e) (atom-to-action e))
((atom? e) (atom-to-action e))
(else (list-to-action e)))))

```
 (else (list-to-action e)))))
```

You guessed it. It would have to find out the type of expression it was passed and then use the associated action.

## (define atom-to-action

## (lambda (e)

(cond
((number? e) *const)
((eq? e \#t) ${ }^{*}$ const)
((eq? e \#f) *const)
((eq? e (quote cons)) *const)
((eq? e (quote car)) *const)
( $\left(e q\right.$ ? e (quote cdr)) ${ }^{*}$ const)
((eq? e (quote null?)) *const)
((eq? e (quote eq?)) *const)
((eq? e (quote atom?)) *const)
((eq? e (quote zero?)) *const)
((eq? e (quote add1)) *const)
((eq? e (quote sub1)) *const)
((eq? e (quote number?)) *const)
(else *identifier))))

Now define the help function list-to-action

## (define list-to-action

(lambda (e)
(cond
((atom? (car e))
(cond
((eq? (car e) (quote quote)) *quote)
((eq? (car e) (quote lambda))
*lambda)
((eq? (car e) (quote cond))
*cond)
(else *application)))
(else *application))))

Assuming that expression-to-action works, we can use it to define value and meaning

```
(define value
 (lambda (e)
 (meaning e (quote()))))
```


## (define meaning

(lambda (e table)
((expression-to-action e) e table)))
What is (quote ()) in the definition of value

It is the empty table. The function value, ${ }^{1}$ together with all the functions it uses, is called an interpreter.

## Actions do speak louder than words.

How many arguments should actions take according to the above?

Two, the expression $e$ and a table.
1 The function value approximates the function eval available in Scheme (and Lisp).

Here is the action for constants.

```
(define *const
 (lambda (e table)
 (cond
 ((number? e) e)
 ((eq? e #t) #t)
 ((eq? e #f) #f)
 (else (build (quote primitive) e)))))
```

Yes, for numbers, it just returns the expression, and this is all we have to do for $0,1,2, \ldots$
For \#t, it returns true.
For \#f, it returns false.
And all other atoms of constant type represent primitives.

Is it correct?

Here is the action for *quote

## (define *quote

(lambda (e table)
(text-of e)))
Define the help function text-of

Have we used the table yet?

Why do we need the table?

Given that the table contains the values of identifiers, write the action *identifier

No, but we will in a moment.

To remember the values of identifiers.

```
(define *identifier
 (lambda (e table)
 (lookup-in-table e table initial-table)))
```

Let's hope never. Why?

```
(define initial-table
 (lambda (name)
 (car (quote ()))))
```

When is it used?

We don't know yet, but we know that it must be the representation of a non-primitive function.

How are non-primitive functions different from primitives?

We know what primitives do; non-primitives are defined by their arguments and their function bodies.

So when we want to use a non-primitive we need to remember its formal arguments and its function body.

At least. Fortunately this is just the $c d r$ of a lambda expression.

And what else do we need to remember?

And how do we represent this?

Here is the action *lambda

```
(define *lambda
 (lambda (e table)
 (build (quote non-primitive)
 (cons table (cdr e)))))
```

(non-primitive


We will also put the table in, just in case we might need it later.

In a list, of course.

What is (meaning e table) where
$e$ is (lambda (x) (cons x y$)$ )
and
table is $\left(\left(\binom{\mathrm{y}}{\mathrm{z}}((8) 9)\right)\right)$

It is probably a good idea to define some help functions for getting back the parts in this three element list (i.e., the table, the formal arguments, and the body). Write table-of formals-of and body-of
(define table-of first)
(define formals-of second)
(define body-of third)

Describe (cond ...) in your own words.

It is a special form that takes any number of cond-lines. It considers each line in turn. If the question part on the left is false, it looks at the rest of the lines. Otherwise it proceeds to answer the right part. If it sees an else-line, it treats that cond-line as if its question part were true.

Here is the function evcon that does what we just said in words:

```
(define evcon
 (lambda (lines table)
 (cond
 ((else? (question-of (car lines)))
 (meaning (answer-of (car lines))
 table))
 ((meaning (question-of (car lines))
 table)
 (meaning (answer-of (car lines))
 table))
 (else (evcon (cdr lines) table)))))
```

Write else? and the help functions
question-of and answer-of

Didn't we violate The First Commandment?

Now use the function evcon to write the *cond action.

## (define else?

(lambda ( $x$ ) (cond
((atom? $x)$ (eq? $x$ (quote else))) (else \#f))))
(define question-of first)
(define answer-of second)

Yes, we don't ask (null? lines), so one of the questions in every cond better be true.

Aren't these help functions useful?

Do you understand ${ }^{*}$ cond now?

How can you become familiar with it?

```
(define *cond
 (lambda (e table)
 (evcon (cond-lines-of e) table)))
```

    (define cond-lines-of cdr)
    Yes, they make things quite a bit more readable. But you already knew that.

Have we seen how the table gets used? Yes, *lambda and *identifier use it.

But how do the identifiers get into the table? In the only action we have not defined: *application.

How is an application represented?
does an application differ from a special form, like (and ...) (or ...) or (cond ...)

An application is a list of expressions whose car position contains an expression whose value is a function.

Before we can apply a function, do we have to get the meaning of all of its arguments?

An application must always determine the meaning of all its arguments.

Yes.

Write a function evlis that takes a list of (representations of) arguments and a table, and returns a list composed of the meaning of each argument.

## (define evlis

(lambda (args table)
(cond
((null? args) (quote ()))
(else
(cons (meaning (car args) table)
(evlis (cdr args) table))))))

What else do we need before we can determine the meaning of an application?

And what then?

We need to find out what its function-of means.

Then we apply the meaning of the function to the meaning of the arguments.

Of course. We just have to define apply, function-of, and arguments-of correctly.

Is it correct?

Write function-of and arguments-of
(define function-of car)
(define arguments-of $c d r$ )

How many different kinds of functions are there?

What are the two representations of functions?
(primitive primitive-name) and (non-primitive (table formals body))

The list (table formals body) is called a closure record.

Write primitive? and non-primitive?

## (define primitive?

(lambda (l) (eq? (first l) (quote primitive))))

## (define non-primitive?

(lambda (l)
(eq? (first l) (quote non-primitive))))

Now we can write the function apply

Here it is:

```
(define apply}\mp@subsup{}{}{1
 (lambda (fun vals)
 (cond
 ((primitive? fun)
 (apply-primitive
 (second fun) vals))
 ((non-primitive? fun)
 (apply-closure
 (second fun) vals)))))
```

[^4]This is the definition of apply-primitive

## (define apply-primitive

(lambda (name vals) (cond
( $e q$ ? name 1 )
(cons (first vals) (second vals)))
((eq? name (quote car))
(car (first vals)))
((eq? name (quote cdr))
( 2 (first vals)))
((eq? name (quote null?))
(null? (first vals)))
((eq? name (quote eq?))
$\left(\left(\frac{3}{\left.\left.e q ? \text { name }(\text { quote }) \frac{4}{}\right)\right)}\right.\right.$
( 5 (first vals)))
((eq? name (quote zero?))
(zero? (first vals)))
((eq? name (quote add1))
(add1 (first vals)))
((eq? name (quote sub1))
(sub1 (first vals)))
((eq? name (quote number?))
(number? (first vals))))))
Fill in the blanks.

Is apply-closure the only function left?

How could we find the result of ( $f a b$ ) where
f is (lambda (x y) (cons $\mathrm{x} y$ ))
a is 1
and
b is (2)

1. (quote cons)
2. $c d r^{1}$
3. eq?
4. (second vals)
5. :atom?

## (define :atom?

(lambda ( $x$ )
(cond
((atom? $x)$ \#t )
((null? $x)$ \#f)
((eq? (car x) (quote primitive)) \#t )
((eq? (car $x)$ (quote non-primitive)) \#t )
(else \#f))))

Yes, and apply-closure must extend the table.

That's tricky. But we know what to do to find the meaning of (cons x y )
where table is $(((\mathrm{xy})$
(1 (2)))).

Why can we do this?
Here, we don't need apply-closure.

Can you generalize the last two steps?

Have you followed all this?

Applying a non-primitive function-a closure-to a list of values is the same as finding the meaning of the closure's body with its table extended by an entry of the form
(formals values)
In this entry, formals is the formals of the closure and values is the result of evlis.

This is a complicated function and it deserves an example.

If not, here is the definition of apply-closure.
(define apply-closure
(lambda (closure vals) (meaning (body-of closure) (extend-table (new-entry (formals-of closure) vals)
(table-of closure)))))

What will be the new arguments of meaning

In the following,
closure is $\left(\left(\left(\begin{array}{l}\mathrm{u} \\ \mathrm{v} \mathbf{w})\end{array}\right.\right.\right.$
((x y z)
(4 5 6)))
( $\mathrm{x} y$ )
(cons zx ))
and
vals is ((a b c) (d ef)).

The new $e$ for meaning will be (cons zx ) and the new table for meaning will be

$$
\begin{aligned}
& (((x y) \\
& ((a b c)(d e f))) \\
& ((u \vee w)
\end{aligned}
$$

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

$$
((x y z)
$$

(4 5 6))).

What is the meaning of (cons $z x)$ where $z$ is 6 and
$x$ is (a b c)

The same as
(meaning e table)
where
$e$ is (cons zx )
and
table is $(((x y)$
$((a b c)(d e f)))$
((u v w)
(1 23 3))
((x y z)
(4 5 6))).

Let's find the meaning of all the arguments.
What is
(evlis args table)
where
args is ( $\mathbf{z} \mathbf{x}$ )
and
table is $(((\mathrm{xy})$
$((\mathrm{a} b \mathrm{c})(\mathrm{d} e \mathrm{f})))$
((u $\vee \mathbf{w})$
(1 2 3) )
((xyz)
$(456))$ )

In order to do this, we must find both
(meaning e table) where
$e$ is $z$
and
(meaning e table)
where
$e$ is x .

What is the (meaning e table)
where $e$ is $z$

6, by using *identifier.

What is (meaning e table) where $e$ is x

So, what is the result of evlis
(6 (a b c)), because evlis returns a list of the meanings.

What is (meaning e table)
where $e$ is cons

We are now ready to (apply fun vals)
where
fun is (primitive cons)
and
vals is (6 (a b c))
Which path should we take?
The apply-primitive path.

Which cond-line is chosen for
(apply-primitive name vals)
where
name is cons
and
vals is (6 (abc))

The third:
((eq? name (quote cons))
(cons (first vals) (second vals))).

Are we finished now?

But what about (define ...)

Yes, we are exhausted.

It isn't needed because recursion can be obtained from the Y combinator.

Yes, but see The Seasoned Schemer.

Yes, but don't bother. transformation with the Y combinator?

What makes value unusual?
It sees representations of expressions.

Should will-stop? see representations of expressions?

That may help a lot.

Does it help?	No, don't bother-we can play the same   game again. We would be able to define a   function like last-try? that will show that we   cannot define the new and improved   will-stop?
else	Yes, it's time for a banquet.

## 



You've reached the intermission. What are your options? You could quickly run out and get the rest of the show, The Seasoned Schemer, or you could read some of the books that we mention below. All of these books are classics and some of them are quite old; nevertheless they have stood the test of time and are all worthy of your notice. Some have nothing whatsoever to do with mathematics or logic, some have to do with mathematics, but only by way of telling an interesting story, and still others are just worth discovering. There should be no confusion: these books are not here to prepare you to read the sequel, they are just for your entertainment. At the end of The Seasoned Schemer you can find a set of references to Scheme and the reference to Common Lisp. Do not feel obliged to jump ahead to the next book. Take some time off and read some of these books instead. Then, when you have relaxed a bit, perhaps removed some of the calories that were foisted upon you, go ahead and dive into the sequel. Enjoy!

Abbott, Edwin A. Flatland. Dover Publications, Inc., New York, 1952. (Original publication: Seeley and Co., Ltd., London, 1884.)

Carroll, Lewis. The Annotated Alice: Alice's Adventures in Wonderland and Through the Looking Glass. Clarkson M. Potter, Inc., New York, 1960. Introduction and notes by Martin Gardner. Original publications under different titles: Alice's Adventures Under Ground and Through the Looking Glass and What Alice Found There, Macmillan and Company, London 1865 and 1872, respectively.

Halmos, Paul R. Naive Set Theory. Litton Educational Publishers, New York, 1960.
Hein, Piet. Grooks. The MIT Press, Cambridge, Massachusetts, 1960.
Hofstadter, Douglas R. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, Inc., New York, 1979.

Nagel, Ernest and James R. Newman. Gödel's Proof. New York University Press, New York, 1958.

Pólya, György. How to Solve It. Doubleday and Co., New York, 1957.
Smullyan, Raymond. To Mock a Mockingbird And Other Logic Puzzles Including an Amazing Adventure in Combinatory Logic. Alfred A. Knopf, Inc., New York, 1985.

Suppes, Patrick. Introduction to Logic. Van Nostrand Co., Princeton, New Jersey, 1957.

## 



## Index

*application, 186
*cond, 185
*const, 183
*identifier, 183
*lambda, 184
*quote, 183
\&, 60, 108
$-61$
$\times, 65$
$\div, 75$
个, 74
$<, 73$
$=, 74$
$>, 72,73$
???, 74
1st-sub-exp, 105, 106
2nd-sub-exp, 106
A, 156
a-friend, 138
a-pair?, 118
add1, 59
addtup, 64
align, 152
all-nums, 78
answer-of, 185
apply, 187
apply-closure, 189
apply-primitive, 188
arguments-of, 187
atom?, 10
atom-to-action, 181
atom-to-function, 134
body-of, 184
build, 119
$C, 155$
cond-lines-of, 185
cookies, 123
difference, 117
edd1, 108
else?, 185
$e q$ ?-c, 127
eq?-salad, 128
eq?-tuna, 136
eqan?, 78
eqlist?, 91, 92, 94
eqset?, 114,115
equal?, 93
eternity, 151
evcon, 185
even?, 144
evens-only*, 144
evens-only*\&co, 145
evlis, 186
expression-to-action, 181
extend-table, 176
first, 119
firsts, 43, 44, 46
formals-of, 184
fullfun?, 122
fun?, 120
function-of, 187
initial-table, 183
insert-g, 132
insertL, 51, 132
insertL ${ }^{*}, 86$
insertL-f, 130
insertR, 48-50, 132
insertR*, 82
insert $R-f, 130$
intersect, 116
intersect?, 115
intersectall, 117
keep-looking, 150
last-friend, 140
last-try, 158
lat?, 16, 19, 109
latest-friend, 139
leftmost, 88
length, 76, 160
length *, 153
list-to-action, 182
looking, 149
lookup-in-entry, 176
lookup-in-entry-help, 176
lookup-in-table, 177
makeset, 112
meaning, 182
member*, 87
member?, 22
multiinsertL, 56, 57, 141
multiinsertLR, 141
multiinsertLREco, 142, 143
multiinsertR, 56, 141
multirember, 53, 135
multirember $夭 c o, 137$
multirember-eq?, 136
multirember-f, 135
multiremberT, 137
multisubst, 57
new-entry, 175
new-friend, 139
no-nums, 77
non-primitive?, 187
numbered?, 99-101
occur, 78
occur*, 85
one-to-one?, 122
one?, 79
operator, 106
pick, 76
primitive?, 187
question-of, 185
rember, 34, 37, 41, 94, 95
rember*, 81
rember-eq?, 129
rember-f, 126, 128, 129
rempick, 77, 79
revpair, 121
revrel, 120, 121
second, 119
seconds, 122
seqL, 131
seqR, 131
seqrem, 133
seqS, 133
sero?, 108
set?, 111
shift, 152
shuffle, 154
sub1, 59
subset?, 113, 114
subst, 51, 133
subst*, 85
subst2, 52
table-of, 184
text-of, 183
the-last-friend, 146
third, 119
tup+, 69, 71
union, 116
value, 102-104, 106, 134, 135, 182
weight*, 154
will-stop?, 157
$x x x, 117$
Y, 172
$y y y, 133$
zub1, 108


[^0]:    ${ }^{1}$ L: nil

[^1]:    ${ }^{1}$ L: Also () and '().
    S: Also '().

[^2]:    ${ }^{1}$ With apologies to George Orwell (1903-1950).

[^3]:    1 Ill-formed S-expressions such as (quote a b), (), (lambda (\#t) \#t), (lambda (5) 5), (lambda (car) car), (lambda a), (cond (3 c) (else b) (6 a)), and (1 2) are not considered here. They can be detected by an appropriate function to which S-expressions are submitted before they are passed on to value.

[^4]:    1 If fun does not evaluate to either a primitive or a non-primitive as in the expression ((lambda (x) (x5)) 3), there is no answer. The function apply approximates the function apply available in Scheme (and Lisp).

